Return to search

A systems engineering approach to model, tune and test synthetic gene circuits

La biología sintética se define como la ingeniería de la biología: el (re)diseño y construcción de nuevas partes, dispositivos y sistemas biológicos para realizar nuevas funciones con fines útiles, que se basan en principios elucidados de la biología y la ingeniería. Para facilitar la construcción rápida, reproducible y predecible de estos sistemas biológicos a partir de conjuntos de componentes es necesario desarrollar nuevos métodos y herramientas. La tesis plantea la optimización multiobjetivo como el marco adecuado para tratar los problemas comunes que surgen en el diseño racional y el ajuste óptimo de los circuitos genéticos sintéticos. Utilizando un enfoque clásico de ingeniería de sistemas, la tesis se centra principalmente en: i) el modelado de circuitos genéticos sintéticos basado en los primeros principios, ii) la estimación de parámetros de modelos a partir de datos experimentales y iii) el ajuste basado en modelos para lograr el desempeño deseado de los circuitos.
Se han utilizado dos circuitos genéticos sintéticos de diferente naturaleza y con diferentes objetivos y problemas: un circuito de realimentación de tipo 1 incoherente (I1-FFL) que exhibe la importante propiedad biológica de adaptación, y un circuito de detección de quorum sensing y realimentación (QS/Fb) que comprende dos bucles de realimentación entrelazados -uno intracelular y uno basado en la comunicación de célula a célula- diseñado para regular el nivel medio de expresión de una proteína de interés mientras se minimiza su varianza a través de la población de células. Ambos circuitos han sido analizados in silico e implementados in vivo.
En ambos casos, se han desarrollado modelos de estos circuitos basado en primeros principios. Se presta especial atención a ilustrar cómo obtener modelos de orden reducido susceptibles de estimación de parámetros, pero manteniendo el significado biológico.
La estimación de los parámetros del modelo a partir de los datos experimentales se considera en diferentes escenarios, tanto utilizando modelos determinísticos como estocásticos. Para el circuito I1-FFL se consideran modelos determinísticos. Aquí, la tesis plantea la utilización de modelos locales utilizando la optimización multiobjetivo para realizar la estimación de parámetros del modelo bajo escenarios con estructura de modelo incompleta. Para el circuito QS/Fb, una estructura controlada por realimentación, el problema tratado es la falta de excitabilidad de las señales. La tesis propone una metodología de estimación en dos etapas utilizando modelos estocásticos. La metodología permite utilizar datos de curso temporal promediados de la población y mediciones de distribución en estado estacionario para una sola célula.
El ajuste de circuitos basado en modelos para lograr un desempeño deseado también se aborda mediante la optimización multiobjetivo. Para el circuito QS/Fb se realiza un análisis estocástico completo. La tesis aborda cómo tener en cuenta correctamente tanto el ruido intrínseco como el extrínseco, las dos principales fuentes de ruido en los circuitos genéticos. Se analiza el equilibrio entre ambas fuentes de ruido y el papel que desempeñan en el bucle de realimentación intracelular, y en la realimentación extracelular de toda la población. La principal conclusión es que la compleja interacción entre ambos canales de realimentación obliga al uso de la optimización multiobjetivo para el adecuado ajuste del circuito. En esta tesis además del uso adecuado de herramientas de optimización multiobjetivo, la principal preocupación es cómo derivar directrices para el ajuste in silico de parámetros de circuitos que puedan aplicarse de forma realista in vivo en un laboratorio estándar. Como alternativa al análisis de sensibilidad de parámetros clásico, la tesis propone el uso de técnicas de clustering a lo largo de los frentes de Pareto, relacionando el compr / La biologia sintètica es defineix com l'enginyeria de la biologia: el (re) disseny i construcció de noves parts, dispositius i sistemes biològics per a realitzar noves funcions útils que es basen a principis elucidats de la biologia i l'enginyeria. Per facilitar la construcció ràpida, reproduïble i predictible de aquests sistemes biològics a partir de conjunts de components és necessari desenvolupar nous mètodes i eines.
La tesi planteja la optimització multiobjectiu com el marc adequat per a tractar els problemes comuns que apareixen en el disseny racional i l' ajust òptim dels circuits genètics sintètics. Utilitzant un enfocament clàssic d'enginyeria de sistemes, la tesi es centra principalment en: i) el modelatge de circuits genètics sintètics basat en primers principis, ii) l' estimació de paràmetres de models a partir de dades experimentals i iii) l' ajust basat en models per aconseguir el rendiment desitjat dels circuits.
S'han utilitzat dos circuits genètics sintètics de diferent naturalesa i amb diferents objectius i problemes: un circuit de prealimentació de tipus 1 incoherent (I1-FFL) que exhibeix la important propietat biològica d'adaptació, i un circuit de quorum sensing i realimentació (QS/Fb) que comprèn dos bucles de realimentació entrellaçats -un intracel·lular i un basat en la comunicació de cèl·lula a cèl·lula- dis-senyat per regular el nivell mitjà d'expressió normal d'una proteïna d'interès mentre es minimitza la seua variació al llarg de la població de cèl·lules. Els dos circuits han estat analitzats in silico i implementats in vivo.
En tots dos casos, s'han desenvolupat models basats en primers principis d'aquests circuits. Després es presta especial atenció a delinear com obtenir models d'ordre reduït susceptibles de estimació de paràmetres, però mantenint el significat biològic. L' estimació dels paràmetres del model a partir de les dades experimentals es considera en diferents escenaris, tant utilitzant models determinístics com estocàstics. Per al circuit I1-FFL es consideren models determinístics. La tesi planteja la utilització de models locals utilitzant la optimització multiobjectiu per realitzar l'estimació de parametres del model sota escenaris amb estructura de model incompleta (dinàmica no modelada). Per al circuit de QS/Fb, una estructura controlada per realimentació, el problema tractat és la manca d'excitabilitat dels senyals. La tesi proposa una metodologia de estimació en dues etapes utilitzant models estocàstics. La metodologia permet utilitzar dades de curs temporal promediats de la població i mesures de distribució en estat estacionari d'una sola una cèl·lula.
L' ajust de circuits basat en models per aconseguir el rendiment desitjat dels circuits també s' aborda mitjançant la optimització multiobjectiu. Per al circuit QS/Fb, es fa un anàlisi estocàstic complet. La tesi aborda com tenir en compte correctament tant el soroll intrínsec com l' extrínsec, les dues principals fonts de soroll en els circuits genètics sintètics. S' analitza l'equilibri entre dues fonts de soroll i el paper que exerceixen en el bucle de realimentació intracel·lular, les i en la realimentació extracel·lular de tota la població. La principal conclusió es que la complexa interacció entre els dos canals de realimentació fa necessari l' ús de la optimització multiobjectiu per al adequat ajust del circuit. En aquesta tesi, a més de l'ús adequat d'eines d'optimització multiobjectiu, la principal preocupació és com derivar directives per al ajust in silico de paràmetres de circuits que puguin aplicar-se de forma realista en viu en un laboratori estàndard. Així, com a alternativa a l'anàlisi de sensibilitat de paràmetres clàssic, la tesi proposa l'ús de l' tècniques de l'agrupació al llarg dels fronts de Pareto, relacionant el compromís de dessempeny amb les regions en l'espai d'paràmetres. / Synthetic biology is defined as the engineering of biology: the deliberate (re)design and construction of novel biological and biologically based parts, devices and systems to perform new functions for useful purposes, that draws on principles elucidated from biology and engineering. Methods and tools are needed to facilitate fast, reproducible and predictable construction of biological systems from sets of biological components.
This thesis raises multi-objective optimization as the proper framework to deal with common problems arising in rational design and optimal tuning of synthetic gene circuits. Using a classical systems engineering approach, the thesis mainly addresses: i) synthetic gene circuit modeling based on first principles, ii) model parameters estimation from experimental data and iii) model-based tuning to achieve desired circuit performance.
Two gene synthetic circuits of different nature and with different goals and inherent problems have been used throughout the thesis: an Incoherent type 1 feedforward circuit (I1-FFL) that exhibits the important biological property of adaptation, and a Quorum sensing/Feedback circuit (QS/Fb) comprising two intertwined feedback loops -an intracellular one and a cell-to-cell communication-based one-- designed to regulate the mean expression level of a protein of interest while minimizing its variance across the population of cells. Both circuits have been analyzed in silico and implemented in vivo.
In both cases, circuit modeling based on first principles has been carried out. Then, special attention is paid to illustrate how to obtain reduced order models amenable for parameters estimation yet keeping biological significance.
Model parameters estimation from experimental data is considered in different scenarios, both using deterministic and stochastic models. For the I1-FFL circuit, deterministic models are considered. In this case, the thesis raises ensemble modeling using multi-objective optimization to perform model parameters estimation under scenarios with incomplete model structure (unmodeled dynamics). For the QS/Fb gene circuit, a feedback controlled structure, the lack of excitability of the signals is the problem addressed. The thesis proposes a two-stage estimation methodology using stochastic models. The methodology allows using population averaged time-course data and steady state distribution measurements at the single-cell level.
Model-based circuit tuning to achieve desired circuit performance is also addressed using multi-objective optimization. First, for the QS/Fb feedback control circuit, a complete stochastic analysis is performed. Here, the thesis addresses how to correctly take into account both intrinsic and extrinsic noise, the two main sources of noise in gene synthetic circuits. The trade-off between both sources of noise, and the role played by in the intracellular single-cell feedback loop and the extracellular population-wide feedback is analyzed. The main conclusion being that the complex interplay between both feedback channels compel the use of multi-objective optimization for proper tuning of the circuit to achieve desired performance. Thus, the thesis wraps up all the previous results and uses them to address circuit tuning for desired performance. Here, besides the proper use of multi-objective optimization tools, the main concern is how to derive guidelines for circuit parameters tuning in silico that can realistically be applied in vivo in a standard laboratory. Thus, as an alternative to classical parameters sensitivity analysis, the thesis proposes the use of clustering techniques along the optimal Pareto fronts relating the performance trade-offs with regions in the circuits parameters space. / This work has been partially supported by the Spanish Government (CICYT DPI2014-
55276-C5-1) and the European Union (FEDER). The author was recipient of the grant
Formación de Personal Investigador by the Universitat Politècnica de València, subprogram 1 (FPI/2013-3242).
She was also recipient of the competitive grants for pre-doctoral stays Erasmus Student Placement-European Programme 2015, and FPI Mobility program 2016 of the
Universitat Politècnica de València.
She also received the competitive grant for a pre-doctoral stay Becas de movilidad
para Jóvenes Profesores e Investigadores 2016, Programa de Becas Iberoamérica of
the Santander Bank. / Boada Acosta, YF. (2018). A systems engineering approach to model, tune and test synthetic gene circuits [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/112725

Identiferoai:union.ndltd.org:upv.es/oai:riunet.upv.es:10251/112725
Date16 November 2018
CreatorsBoada Acosta, Yadira Fernanda
ContributorsPicó Marco, Jesús Andrés, Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica, Comisión Interministerial de Ciencia y Tecnología, Universitat Politècnica de València, European Regional Development Fund, Banco Santander, Ministerio de Economía y Competitividad
PublisherUniversitat Politècnica de València
Source SetsUniversitat Politècnica de València
LanguageEnglish
Detected LanguageSpanish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/acceptedVersion
Rightshttp://rightsstatements.org/vocab/InC/1.0/, info:eu-repo/semantics/openAccess
Relationinfo:eu-repo/grantAgreement/MINECO//DPI2014-55276-C5-1-R/ES/BIOLOGIA SINTETICA PARA LA MEJORA EN BIOPRODUCCION: DISEÑO, OPTIMIZACION, MONITORIZACION Y CONTROL/ /, info:eu-repo/grantAgreement/UPV//FPI%2F2013-3242/

Page generated in 0.0037 seconds