Return to search

Switched Markov Jump Linear Systems: Analysis and Control Synthesis

Markov jump linear systems find application in many areas including economics, fault-tolerant control, and networked control. Despite significant attention paid to Markov jump linear systems in the literature, few authors have investigated Markov jump linear systems with time-inhomogeneous Markov chains (Markov chains with time-varying transition probabilities), and even fewer authors have considered time-inhomogeneous Markov chains with a priori unknown transition probabilities. This dissertation provides a formal stability and disturbance attenuation analysis for a Markov jump linear system where the underlying Markov chain is characterized by an a priori unknown sequence of transition probability matrices that assumes one of finitely-many values at each time instant. Necessary and sufficient conditions for uniform stochastic stability and uniform stochastic disturbance attenuation are reported. In both cases, conditions are expressed as a set of finite-dimensional linear matrix inequalities (LMIs) that can be solved efficiently. These finite-dimensional LMI analysis results lead to nonconservative LMI formulations for optimal controller synthesis with respect to disturbance attenuation. As a special case, the analysis also applies to a Markov jump linear system with known transition probabilities that vary in a finite set. / Ph. D.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/50859
Date14 November 2014
CreatorsLutz, Collin C.
ContributorsElectrical and Computer Engineering, Stilwell, Daniel J., Ravindran, Binoy, Woolsey, Craig A., Beex, Aloysius A., Baumann, William T.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0021 seconds