abstract: The Kinsley Mountain gold deposit of northeastern Nevada, located ~70 km south of Wendover, Nevada, contains seven sediment-hosted, disseminated-gold deposits, in Cambrian limestones and shales. Mining ceased in 1999, with 138,000 ounces of gold mined at an average grade between 1.5-2.0 g/t. Resource estimates vary between 15,000 and 150,000 ounces of gold remaining in several mineralized pods. Although exploration programs have been completed within the study area, the structural history and timing of precious-metal mineralization are still poorly understood. This study aims to better understand the relation between stratigraphy, structural setting, and style of gold mineralization. In order to accomplish these goals, geological mapping at a scale of 1:5,000 was conducted over the property as well as analysis of soil and rock chip samples for multi-element geochemistry. Using cross-cutting relationships, the structural history of Kinsley Mountain has been determined. The deformation can broadly be categorized as an early stage of compressional tectonics including folding, attenuation of the stratigraphy, and thrust faulting. This early stage was followed by a series of extensional deformation events, the youngest of which is an ongoing process. The structural history determined from this study fits well into a regional context and when viewed in conjunction with the mineralization event, can be used to bracket the timing of gold mineralization. The northwest oriented structure responsible for concentrating decalcification, silicification, and mineralization has two generations of cave fill breccias that both pre- and post-date the gold event. The statistical analysis of multi-element geochemistry for rock chip and soil samples has determined that Au is most strongly associated with Te, while weaker correlations exist between Au and Ag, As, Hg, Mo, Sb, Tl, and W. This suite of elements is associated with an intrusion driven system and is atypical of Carlin-type gold systems. From these elemental associations the gold mineralization event is thought to be controlled by the emplacement of a felsic intrusion. The responsible intrusion may be an exposed quartz monzonite to the south of the study area, as suggested by possible zonation of Cu, Pb, and Zn, which decrease in concentration with increasing distance from the outcropping stock. Alternatively, an unexposed intrusion at depth cannot be ruled out as the driver of the mineralizing system. / Dissertation/Thesis / M.S. Geological Sciences 2012
Identifer | oai:union.ndltd.org:asu.edu/item:14566 |
Date | January 2012 |
Contributors | Macfarlane, Bryan John (Author), Reynolds, Stephen (Advisor), Hervig, Richard (Committee member), Burt, Donald (Committee member), Arizona State University (Publisher) |
Source Sets | Arizona State University |
Language | English |
Detected Language | English |
Type | Masters Thesis |
Format | 99 pages |
Rights | http://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved |
Page generated in 0.0019 seconds