Large-scale accretionary and collisional crustal orogenic architecture is studied combining structural geology, lithostratigraphy, geochronology and magmatic petrology with gravity, magnetic and seismic data. This multidisciplinary approach allows characterizing the structure and composition of the orogenic crust in two accretionary-collisional systems. The Central Asian Orogenic Belt (CAOB) constituting one third of the Asia continent and the Bohemian Massif are two Palaeozoic orogens formed by accretion followed by collision. It is proposed that the CAOB formed by successive Paleozoic accretion of oceanic and continental fragments followed by a late Palaeozoic to early Mesozoic N-S convergence of North Chinese and Siberian Cratons. The comparison between the potential fields and the geological data reveals an incorrect compartmentalization into different lithostratigraphic terranes. In contrast to geology the geophysical approach allows the analysis of the crustal structures on a complete thickness of crustal column. This thesis presents a compilation of geological data combined with unique gravity and magnetic results which are integrated into a preliminary model for the architecture of the continental crust. Conversely, an important collection of complementary data is available for the Bohemian Massif, allow more precise 3D geophysical forward modeling. In this area, geophysical data reveal the occurrence of an allochtonous lower crustal layer with a felsic composition. This indicates that the Variscan orogenic crust actually resulted from the accretion of contrasted crustal fragments.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00827691 |
Date | 14 December 2012 |
Creators | Guy, Alexandra |
Publisher | Université de Strasbourg |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | English |
Type | PhD thesis |
Page generated in 0.0023 seconds