This research investigates if the LRFD strength reduction factor for cold-formed steel compression members can be increased above its current value of Ï c = 0.85, which was established by the LRFD Cold-Formed Steel Design Manual (1991) on the basis of 264 column tests. The resistance factor in the Canadian code for cold-formed steel compression members is also evaluated. A total of 675 concentrically loaded plain and lipped C-section columns, plain and lipped Z-section columns, hat and angle columns, including members with holes, are considered in the study. The predicted strengths are calculated with the AISI-S100-07 Main Specification and the AISI Direct Strength Method. The test-to-predicted strength statistics are employed with the first order second moment reliability approach in AISI-S100-07 Chapter F as well as a higher order method to calculate the resistance factor per cross-section type, ultimate limit state, and considering partially and fully effective columns. The observed trends support a higher resistance factor for columns buckling in a distortional buckling limit state and an expansion of the current DSM prequalified limits. The results also show that DSM predicts the column capacity more accurately than the Main Specification. The test-to-predicted ratios for plain and lipped angle columns exhibit a high coefficient of variation and become more and more conservative as global slenderness increases. It is concluded that fundamental research on the mechanics of angle compression members is needed to improve existing design methods. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/33694 |
Date | 20 July 2010 |
Creators | Ganesan, Karthik |
Contributors | Civil Engineering, Moen, Cristopher D., Easterling, William Samuel, Rojiani, Kamal B. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | Ganesan_K_T_2010.pdf |
Page generated in 0.0019 seconds