Return to search

Quantum Communication: Through the Elements: Earth, Air, Water

This thesis encompasses a body of experimental work on the use of structured light in quantum cryptographic protocols. In particular, we investigate the ability to perform quantum key distribution through various quantum channels (fibre, free-space, underwater) in laboratory and realistic conditions. We first demonstrate that a special type of optical fibre (vortex fibre) capable of coherently transmitting vector vortex modes is a viable quantum channel. Next, we describe the first demonstration of high-dimensional quantum cryptography using structured photons in an urban setting. In particular, the prevalence of atmospheric turbulence can introduce many errors to a transmitted key; however, we are still able to transmit more information per carrier using a 4-dimensional scheme in comparison to a 2-dimensional one. Lastly, we investigate the possibility of performing secure quantum communication with twisted photons in an uncontrolled underwater channel. We find that though it is possible for low-dimensional schemes, high-dimensional schemes suffer from underwater turbulence without the use of corrective wavefront techniques.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/39648
Date24 September 2019
CreatorsSit, Alicia
ContributorsKarimi, Ebrahim
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0021 seconds