Swim turns are a component of competitive swimming where considerable advantage can be gained or lost. This thesis investigates underwater dolphin and flutter kicking techniques and their application to exits following the turn in freestyle swimming. Five separate investigations were conducted to examine the kinetics and kinematics of each underwater kicking technique and are presented in expanded journal manuscript form. Studies one, two and three involved the comparison of freestyle turns when using flutter and dolphin kicking wall exit techniques. The results obtained indicated that freestyle turns using flutter kicking were faster than dolphin kicking in age-group swimmers. For this group, significant and equal improvements were made to flutter and dolphin kick turn performances following six weeks of dolphin kick and dolphin kick turn training. However, no difference in turn times were observed between kicking conditions by older and more highly skilled swimmers. Study four involved a kinematical comparison of maximal underwater free-swimming dolphin and flutter kicking. Results showed dolphin kick to be a superior underwater free-swimming technique. Greater foot width, increased ankle range of movement and greater vertical displacement of the ankle and foot during kicking were shown to be highly predictive of faster underwater dolphin kicking. Investigation five compared the drag forces and kinematics between the dolphin and flutter kicking techniques while subjects were towed at velocities representing those experienced following wall turn push-off. Results favour the dolphin kick as a superior underwater technique at these higher velocities. Increased underwater dolphin kicking efficiency, as measured by decreased net towing force, was found to be associated with larger kick amplitude – rate ratios, and higher kick amplitude – streamline length ratios. / Doctor of Philosophy
Identifer | oai:union.ndltd.org:ADTP/257052 |
Date | January 2004 |
Creators | Clothier, Peter . University of Ballarat. |
Publisher | University of Ballarat |
Source Sets | Australiasian Digital Theses Program |
Detected Language | English |
Rights | Copyright Peter J. Clothier |
Page generated in 0.0013 seconds