Genetic programming is a nature-inspired method of programming that allows an automated creation and adaptation of programs. For nearly two decades, this method has been able to provide human-comparable results across many fields. This work gives an introduction to the problems of evolutionary algorithms, genetic programming and the way they can be used to improve already existing software. This work then proposes a program able to use these methods to improve an implementation of cartesian genetic programming (CGP). This program is then tested on a CGP implementation created specifically for this project, and its functionality is then verified on other already existing implementations of CGP.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:255458 |
Date | January 2016 |
Creators | Husa, Jakub |
Contributors | Jaroš, Jiří, Sekanina, Lukáš |
Publisher | Vysoké učení technické v Brně. Fakulta informačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0049 seconds