L’objet de cette thèse, effectuée en collaboration avec Saint-Gobain dans le cadre d’un financement CIFRE, est l’étude du transfert thermique à l’interface entre les objets microscopiques constituant les matériaux isolants à base de verre. Nous avons développé deux instruments nouveaux, permettant d’investiguer le transfert thermique entre deux objets microscopiques en verre. Le premier instrument est une sonde locale à balayage utilisant une sonde thermosensible (sonde SThM) permettant d’effectuer une mesure très locale de la température d’un échantillon ou éventuellement de le chauffer lorsqu’elle est en contact avec celui-ci. Nous avons utilisé cette sonde de manière détournée, en collant une bille de verre de 20µm de diamètre à son extrémité, en la plaçant au-dessus d’une surface plane de verre, dont la température est différente de celle de la bille, et en étudiant la température au sommet de cette bille à mesure que la distance bille-plan varie. Les « courbes d’approche » ainsi obtenues et un modèle en résistances équivalentes que nous proposons permettent de donner une première estimation de la résistance thermique de contact dans une géométrie bille-plan. Le deuxième instrument est un dispositif nouveau de thermographie infrarouge. Il s’agit d’une méthode sans contact qui permet à la fois de produire des images dans le moyen infrarouge avec une résolution spatiale meilleure que ce que la limite de diffraction ne permet, mais aussi d’effectuer une mesure dynamique du refroidissement d’un système constitué d’une ou de plusieurs fibres de verre micrométriques(s) suite à un échauffement bref et local par absorption d’un laser ultraviolet impulsionnel. La comparaison de ces courbes de refroidissement enregistrées sur une fibre seule ou sur un croisement de fibres permet d’obtenir une information sur la résistance thermique de contact au croisement des deux fibres. Un modèle semi-analytique que nous avons développé permet de reproduire ces tendances sur une fibre seule. Nous avons également développé un modèle perturbatif exploitant le modèle à une fibre qui permet de reproduire l’évolution spatio-temporelle de la chaleur au sein d’un système de deux fibres en contact. / The aim of this thesis, in collaboration with Saint-Gobain within the framework of a CIFRE funding, is the study of heat transfer at the interface between microscopic objects from which isolation materials are made. During this thesis we developed two new instruments, allowing to investigate the heat transfer between two microscopic glass objects. The first instrument is a scanning probe microscope using a thermosensitive probe (SThM probe) allowing to make a very local temperature measurement or to produce a local heating of a sample in contact with the probe. We used this probe in an unusual way, by gluing a 20µm diameter glass bead on its thermosensitive end, by placing it above a flat glass surface whose temperature is different from that of the bead, and by studying the temperature at the top of this bead as the distance bead-to-plan varies. The "approach curves" obtained in this way and a model using a thermoelectric analogy that we propose allow to give a first estimation of the thermal resistance of contact in a sphere-plane geometry. The second instrument is a new infrared thermography device. It is a contactless method which allows to produce images in the mid-infrared with a spatial resolution better than the diffraction limit, but also to carry out a dynamic measurement of the cooling of a system made of one or more micrometric glass fibers, after a short and local heating by absorption of a pulsed ultraviolet laser. Comparison of these curves recorded on a single fiber or on two crossing fibers makes it possible to obtain an information on the thermal resistance of contact at the crossing of the two fibers. A semi-analytical model that we developed allows us to reproduce these trends on a single fiber, while a perturbative approach exploiting the one-fiber model allows us to reproduce the spatiotemporal evolution of heat within a system of two fibers in contact.
Identifer | oai:union.ndltd.org:theses.fr/2017PSLET030 |
Date | 22 November 2017 |
Creators | Perros, Elodie |
Contributors | Paris Sciences et Lettres, De Wilde, Yannick |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds