Return to search

Comparison and Simulation of a Water Distribution Network in EPANET and a New Generic Graph Trace Analysis Based Model

The main purpose of this study was to compare the Distributed Engineering Workstation (DEW) and EPANET models. These two models are fundamentally different in the approaches taken to simulate hydraulic systems. To better understand the calculations behind each models' hydraulic simulation, three solution methods were evaluated and compared. The three solution approaches were the Todini, Hardy-Cross, and DEW bisection methods. The Todini method was included in the study because of its similarities to EPANET's hydraulic solution method and the Hardy-Cross solution was included due to its similarities with the DEW approach. Each solution method was used to solve a simple looped network, and the hydraulic solutions were compared. It was determined that all three solution methods predicted flow values that were very similar.

A different, more complex looped network from the solution method comparison was simulated using both EPANET and DEW. Since EPANET is a well established water distribution system model, it was considered the standard for the comparison with DEW. The predicted values from the simulation in EPANET and DEW were compared. This comparison offered insight into the functionality of DEW's hydraulic simulation component. The comparison determined that the DEW model is sensitive to the tolerance value chosen for a simulation. The flow predictions between the DEW and EPANET models became much closer when the tolerance value in DEW was decreased. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/31177
Date17 February 2009
CreatorsNewbold, James Richard
ContributorsEnvironmental Engineering, Gallagher, Daniel L., Dietrich, Andrea M., Widdowson, Mark A.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationNewbold_Thesis_ETD_v2.pdf

Page generated in 0.0021 seconds