La stimulation magnétique transcrânienne (SMT) et la spectroscopie par résonance magnétique (SRM) sont des techniques non-invasives permettant de quantifier l’activité GABAergique et glutamatergique du cerveau. La SMT et la SRM ont plusieurs applications en clinique et en recherche. En effet, ces outils peuvent être utilisés afin de déterminer l’efficacité d’un traitement ou la progression d’un processus pathologique. Cependant, malgré leur utilisation croissante dans le domaine médical, une certaine incertitude demeure quant aux substrats neurochimiques de ces techniques et à la stabilité à long terme des données acquises par SMT et SRM. Donc, dans un premier temps, la stabilité à long terme de plusieurs mesures prises par SMT et par SRM a été étudiée. En second lieu, afin de mieux comprendre quelles composantes du système GABAergique sont ciblées par ces deux techniques, des mesures de SRM et de SMT ont été obtenues après l’administration d’une benzodiazépine, le lorazépam, selon un devis expérimental randomisé, croisé, à double-aveugle et contrôlé par placébo.
Deux articles composent cette thèse. Le premier article fait état d’une étude longitudinale, auprès d’adultes en santé, ayant pour but de déterminer la stabilité à long terme des concentrations de GABA et de Glx (glutamate + glutamine) obtenues par SRM ainsi que la stabilité des mesures d’inhibition et de facilitation corticale obtenues par SMT (rMT : seuil moteur au repos, %MSO : pourcentage d’intensité maximale du stimulateur, SICI : inhibition intra-corticale courte, LICI : inhibition intra-corticale longue, ICF : facilitation intra-corticale). Il a été démontré que les niveaux de GABA et de Glx sont stables au cours d’une période de trois mois. Alors que les mesures SMT de seuil moteur au repos, d’excitabilité corticale et de période corticale silencieuse sont stables à travers le temps, l’inhibition corticale à court intervalle et à long intervalle ainsi que la facilitation corticale sont beaucoup plus variables.
Le deuxième article vise à comprendre la dissociation dans la sensibilité des mesures de SMT et SRM à refléter différentes facettes de l’activité GABAergique du cortex moteur. L’article porte sur une étude dans laquelle du lorazépam a été administré à des participants adultes en santé selon un devis randomisé, croisé, à double-aveugle et contrôlé par placébo. Des données SRM (GABA et Glx; cortex sensorimoteur et occipital) ainsi que des mesures SMT (cortex moteur) ont été obtenues suivant l’administration de lorazépam (ou de placébo). Il a été démontré que la prise de lorazépam réduisait les niveaux de GABA occipitaux, augmentait l’inhibition corticale et réduisait l’excitabilité du cortex moteur. La prise de médicament n’avait pas d’effet sur les autres mesures obtenues. De plus, il a été trouvé que l’effet du traitement sur l’inhibition corticale dépendait des concentrations endogènes de GABA dans le cortex sensorimoteur; une plus grande concentration de GABA étant prédictive d’une plus grande inhibition corticale suivant la prise de lorazépam.
Dans leur ensemble, les résultats provenant des deux articles présentés dans cette thèse permettent de conclure que les mesures SRM des divers neurométabolites sont stables à long terme dans le cortex moteur et pourraient potentiellement servir de marqueurs dans l’évaluation de l’efficacité d’un traitement ou de l’évolution de processus pathologiques. Par contre, bien que certaines mesures SMT soient stables à long terme (rMT, %MSO, CSP), d’autres sont beaucoup plus variables (SICI, LICI, ICF); ainsi, la prudence est conseillée dans l’interprétation de ces mesures lors d’études cliniques. De plus, les effets différents que produit la prise de lorazépam sur les mesures SRM et SMT supportent la théorie selon laquelle les deux techniques n’ont pas les mêmes substrats neurochimiques. En effet, alors que les mesures TMS d’inhibition corticale refléteraient l’activité phasique des récepteurs GABAA, le signal SRM de GABA serait majoritairement intracellulaire et ne représenterait pas la neurotransmission GABAergique. / Transcranial magnetic stimulation (TMS) and magnetic resonance spectroscopy (MRS) are non-invasive techniques that allow the measurement of GABAergic and glutamatergic activity in the brain. TMS and MRS can be used to assess inhibitory and excitatory mechanisms, treatment response or disease presence and progression in vivo. However, despite their growing use in research and medical settings, ambiguity remains regarding their neurochemical substrates and long-term reproducibility. The goal of the present thesis is twofold. First, the long-term stability and reliability of various MRS and TMS measurements, obtained in the motor cortex, was investigated. Second, to better understand which aspects of the GABAergic network are targeted by the two techniques, TMS and MRS measures reflecting cortical inhibition and excitation were obtained following lorazepam administration using a placebo-controlled, double-blind, randomized, crossover design.
Two articles comprise this thesis. The first article is a longitudinal assessment of the stability and reliability of MRS-GABA and Glx (glutamate + glutamine) and TMS measures of cortical inhibition and facilitation in the sensorimotor (SMC) cortex of healthy adults. It was determined that MRS-GABA and MRS-Glx are stable over a three-month interval. TMS measures of resting motor threshold (rMT), cortical excitability (% maximum stimulator output; MSO) and cortical silent period (CSP) were also found to be stable and reliable. However, paired-pulse TMS measures such as short-interval cortical inhibition (SICI), long-interval cortical inhibition (LICI) and intracortical facilitation (ICF) had greater variability.
The second article aims to understand the differential sensitivity of TMS and MRS with respect to GABAergic activity in the primary motor cortex. It is based on the results and conclusions of a placebo-controlled, double-blind, randomized, crossover study, where benzodiazepine lorazepam was given to healthy adult volunteers. Magnetic resonance spectroscopy (GABA and Glx) was performed in the sensorimotor cortex and occipital cortex (OC). TMS measurements were acquired in the motor cortex only. MRS and TMS measures of cortical inhibition and excitability (rMT, input/output (I/O) curve, SICI, LICI, ICF, CSP) were obtained following lorazepam or placebo administration. Lorazepam was found to decrease occipital GABA concentration, increase motor cortical inhibition and decrease cortical excitability. Lorazepam administration had no effect on other neurometabolites or TMS measurements. The effect of Lorazepam on short-interval cortical inhibition was found to depend on endogenous GABA levels in the SMC; higher GABA concentrations predicted a greater increase in SICI following drug intake.
Taken together, the studies presented in this thesis indicate that MRS neurometabolite levels are stable over time and may thus potentially serve as markers for the monitoring of disease progression and treatment response. However, while some TMS measures have good long-term stability (rMT, %MSO, CSP), others are not as reliable nor stable (SICI, LICI, ICF); care must be taken in clinical settings. Furthermore, the differential effects of lorazepam on MRS and TMS measures support the idea that the two techniques probe different aspects of the GABAergic system. Whereas TMS measures of cortical inhibition reflect phasic GABAA receptor activity, MRS-GABA primarily reflects intracellular, non-neurotransmitter metabolic GABA.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/25259 |
Date | 08 1900 |
Creators | Ferland, Marie Chantal |
Contributors | Théoret, Hugo |
Source Sets | Université de Montréal |
Language | English |
Detected Language | French |
Type | thesis, thèse |
Format | application/pdf |
Page generated in 0.003 seconds