This master’s thesis deals with the implementation of functional solution for classifying road users using mobile device with Android operating system. The goal is to create Android application which classifies vehicles in real time using rear-facing camera and saves timestamps of classification. Testing is performed mostly with own, diversely modificated dataset. Five models are trained and their performance is measured in dependence on hardware. The best classification performance is from pretrained MobileNet model where transfer learning with 6 classes of own dataset is used – 62,33 %. The results are summarized and a method for faster and more accurate traffic analysis is proposed.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:442362 |
Date | January 2021 |
Creators | Mikulec, Vojtěch |
Contributors | Kiac, Martin, Myška, Vojtěch |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0019 seconds