Return to search

Domain adaptation from 3D synthetic images to real images

Background. Domain adaptation is described as, a model learning from a source data distribution and performing well on the target data. This concept, Domain adaptation is applied to assembly-line production tasks to perform an automatic quality inspection. Objectives. The aim of this master thesis is to apply this concept of 3D domain adaptation from synthetic images to real images. It is an attempt to bridge the gap between different domains (synthetic and real point cloud images), by implementing deep learning models that learn from synthetic 3D point cloud (CAD model images) and perform well on the actual 3D point cloud (3D Camera images). Methods. Through this course of thesis project, various methods for understand- ing the data and analyzing it for bridging the gap between CAD and CAM to make them similar is looked into. Literature review and controlled experiment are research methodologies followed during implementation. In this project, we experiment with four different deep learning models with data generated and compare their performance to know which deep learning model performs best for the data. Results. The results are explained through metrics i.e, accuracy and train time, which were the outcomes of each of the deep learning models after the experiment. These metrics are illustrated in the form of graphs for comparative analysis between the models on which the data is trained and tested on. PointDAN showed better results with higher accuracy compared to the other 3 models. Conclusions. The results attained show that domain adaptation for synthetic images to real images is possible with the data generated. PointDAN deep learning model which focuses on local feature alignment and global feature alignment with single-view point data shows better results with our data.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:bth-19303
Date January 2020
CreatorsManamasa, Krishna Himaja
PublisherBlekinge Tekniska Högskola, Institutionen för datavetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds