Return to search

Automatic Virus Identification using TEM : Image Segmentation and Texture Analysis / Automatisk identifiering av virus med hjälp av transmissionselektronmikroskopi : bildsegmentering och texturanalys

Viruses and their morphology have been detected and studied with electron microscopy (EM) since the end of the 1930s. The technique has been vital for the discovery of new viruses and in establishing the virus taxonomy. Today, electron microscopy is an important technique in clinical diagnostics. It both serves as a routine diagnostic technique as well as an essential tool for detecting infectious agents in new and unusual disease outbreaks. The technique does not depend on virus specific targets and can therefore detect any virus present in the sample. New or reemerging viruses can be detected in EM images while being unrecognizable by molecular methods. One problem with diagnostic EM is its high dependency on experts performing the analysis. Another problematic circumstance is that the EM facilities capable of handling the most dangerous pathogens are few, and decreasing in number. This thesis addresses these shortcomings with diagnostic EM by proposing image analysis methods mimicking the actions of an expert operating the microscope. The methods cover strategies for automatic image acquisition, segmentation of possible virus particles, as well as methods for extracting characteristic properties from the particles enabling virus identification. One discriminative property of viruses is their surface morphology or texture in the EM images. Describing texture in digital images is an important part of this thesis. Viruses show up in an arbitrary orientation in the TEM images, making rotation invariant texture description important. Rotation invariance and noise robustness are evaluated for several texture descriptors in the thesis. Three new texture datasets are introduced to facilitate these evaluations. Invariant features and generalization performance in texture recognition are also addressed in a more general context. The work presented in this thesis has been part of the project Panvirshield, aiming for an automatic diagnostic system for viral pathogens using EM. The work is also part of the miniTEM project where a new desktop low-voltage electron microscope is developed with the aspiration to become an easy to use system reaching high levels of automation for clinical tissue sections, viruses and other nano-sized particles.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-217328
Date January 2014
CreatorsKylberg, Gustaf
PublisherUppsala universitet, Avdelningen för visuell information och interaktion, Uppsala universitet, Bildanalys och människa-datorinteraktion, Uppsala
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationDigital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 1122

Page generated in 0.0023 seconds