This thesis deals with the analysis of micromotion of a single charged calcium ion trapped inside the linear Paul's ion trap and the influence of residual micromotion on the systematic frequency shifts of the clock transition of calcium ion. The fundamental properties of the motion of an ion confined within linear Paul's ion trap are shown in general using a theoretical description. The micromotion component of the overall motion is especially emphasized. A model expressing micromotion in the axial direction of the trap is introduced on the basis of the results of the numerical calculation of electric fields inside the trap. The model is compared to the reality experimentally. Then, the photon-correlation method of detection of micromotion is introduced and subsequently used to minimize and to estimate a measure of residual micromotion in all spacial directions. According to the achievable measure of residual micromotion, the systematic frequency shifts caused by this micromotion are estimated. It can be seen that we are able to reach uncertainties of the relative frequency shifts due to micromotion below 10^20. We expect that uncertainty of total motional systematic frequency shift is in our case limited by thermal motion.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:417151 |
Date | January 2020 |
Creators | Vadlejch, Daniel |
Contributors | Oral,, Martin, Číp, Ondřej |
Publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0146 seconds