Return to search

Advancing the Theoretical Foundation of the Partially-averaged Navier-Stokes Approach

The goal of this dissertation is to consolidate the theoretical foundation of variable-resolution (VR) methods in general and the partially-averaged Navier-Stokes (PANS) approach in particular. The accurate simulation of complex turbulent flows remains an outstanding challenge in modern computational fluid dynamics. High- fidelity approaches such as direct numerical simulations (DNS) and large-eddy simulation (LES) are not typically feasible for complex engineering simulations with cur- rent computational technologies. Low-fidelity approaches such as Reynolds-averaged Navier-Stokes (RANS), although widely used, are inherently inadequate for turbulent flows with complex flow features. VR bridging methods fill the gap between DNS and RANS by allowing a tunable degree of resolution ranging from RANS to DNS. While the utility of VR methods is well established, the mathematical foundations and physical characterization require further development.

This dissertation focuses on the physical attributes of fluctuations in partially-resolved simulations of turbulence. The specific objectives are to: (i) establish a framework for assessing the physical fidelity of VR methods to examine PANS fluctuations; (ii) investigate PANS simulations subject to multiple resolution changes; (iii) examine turbulent transport closure modeling for partially-resolved fields; (iv) examine the effect of filter control parameters in the limit of spectral cut-off in the dissipative region; and (v) validate low-Reynolds number corrections with RANS for eventual implementation with PANS. While the validation methods are carried out in the context of PANS, they are considered appropriate for all VR bridging methods.

The key findings of this dissertation are summarized as follows. The Kolmogorov hypotheses are suitably adapted to describe fluctuations of partially-resolved turbulence fields, and the PANS partially-resolved field is physically consistent with the adapted Kolmogorov hypotheses. PANS adequately recovers the correct energetics in instances of multiple resolution changes. Scaling arguments are used to determine the correct transport closure model for a partially-resolved field in a boundary layer. The need to modify the fε filter control parameter for cut-off in the dissipation range is highlighted. A low-Reynolds number near-wall correction was evaluated on a RANS model with the intent of adapting to it VR methods. Overall, PANS shows promise as a theoretically sound modeling approach, and this work lays the foundation for future PANS investigations.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/149535
Date03 October 2013
CreatorsReyes, Dasia Ann
ContributorsGirimaji, Sharath S., Daripa, Prabir, Bowersox, Rodney D. W., Cizmas, Paul G. A.
Source SetsTexas A and M University
LanguageEnglish
Detected LanguageEnglish
TypeThesis, text
Formatapplication/pdf

Page generated in 0.0166 seconds