L'arrivée massive d'écrans LCD dits de haute-définition sur le marché, entraîne un besoin acru d'algorithmes d'augmentation de résolution pour l'affichage d'images ou de vidéos dont la résolution est inférieure à celle de l'écran. Nous proposons un schéma novateur d'interpolation d'images, basée sur une analyse multirésolution de la direction des contours. Le but de cette approche est de corriger les artefacts classiques d'interpolation qui apparaissent lorsque des méthodes habituelles sont utilisées (bilinéaire, bicubique), tout en évitant l'apparition des artefacts engendrés par la plupart des méthodes d'interpolation directionnelle. Notre estimation d'orientation de contours, basée sur une division de l'image originale en quadtree et une étude fréquentielle des contours est comparée à deux méthodes faisant référence dans l'état de l'art (transformée de Radon et algorithme de projection utilisé pour la création des bandelettes). Cette comparaison permet d'étudier les comportements de chaque méthode en vue d'une application à des images naturelles. Par la suite, l'interpolation en elle-même est introduite. Elle est basée sur l'utilisation d'un noyau d'interpolation isotrope (cubic-spline), qui est corrigée grâce à un filtrage Gaussien localement orienté dans la direction des contours. Les régions ne contenant pas de contour sont préservées grâce à la création d'un masque construit à partir de filtres de Gabor. Enfin, les résultats de notre interpolation sont comparés à des méthodes d'interpolation directionnelle récentes, afin d'illustrer les bonnes performances de notre algorithme sur des images naturelles de natures variées. / The recent success of high definition screens has increased the need of interpolation algorithms, to display images or videos which resolution is smaller than the screen resolution. We propose a new image interpolation process, based on a multiresolution edge orientation analysis. The goal of this technique is to correct usual artifacts that appear on edges when classical interpolation methods are used (bilinear, bicubic), without introducing new artifacts that are often produced by directional interpolations. Our orientation estimation, based on a quadtree division and a multiresolution approach is evaluated and compared to two other state-of-the-art methods (Radon transform, and the projection method used in the Bandlet transform algorithm), to study its advantages in the context of an application to natural images. Then, we introduce our interpolation technique, based on an isotropic reference interpolation (cubic-spline) that is corrected by a two-dimension Gaussian filter, locally oriented in the direction of the edge. Edge-free regions are preserved with a Gabor mask that is built to protect pixels which do not need any correction. Finally, our results are compared to recent state-of-the-art directional interpolations to illustrate the good performance of our algorithm on various contents of natural images.
Identifer | oai:union.ndltd.org:theses.fr/2011GRENT017 |
Date | 10 May 2011 |
Creators | Van Reeth, Eric |
Contributors | Grenoble, Chassery, Jean-Marc, Bertolino, Pascal |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds