Model validation is the process of determining the degree to which a model is an accurate representation of the true value in the real world. The results of a model validation study can be used to either quantify the model form uncertainty or to improve/calibrate the model. However, the model validation process can become complicated if there is uncertainty in the simulation and/or experimental outcomes. These uncertainties can be in the form of aleatory uncertainties due to randomness or epistemic uncertainties due to lack of knowledge. Four different approaches are used for addressing model validation and calibration: 1) the area validation metric (AVM), 2) a modified area validation metric (MAVM) with confidence intervals, 3) the standard validation uncertainty from ASME VandV 20, and 4) Bayesian updating of a model discrepancy term. Details are given for the application of the MAVM for accounting for small experimental sample sizes. To provide an unambiguous assessment of these different approaches, synthetic experimental values were generated from computational fluid dynamics simulations of a multi-element airfoil. A simplified model was then developed using thin airfoil theory. This simplified model was then assessed using the synthetic experimental data. The quantities examined include the two dimensional lift and moment coefficients for the airfoil with varying angles of attack and flap deflection angles. Each of these validation/calibration approaches will be assessed for their ability to tightly encapsulate the true value in nature at locations both where experimental results are provided and prediction locations where no experimental data are available. Generally it was seen that the MAVM performed the best in cases where there is a sparse amount of data and/or large extrapolations and Bayesian calibration outperformed the others where there is an extensive amount of experimental data that covers the application domain. / Master of Science / Uncertainties often exists when conducting physical experiments, and whether this uncertainty exists due to input uncertainty, uncertainty in the environmental conditions in which the experiment takes place, or numerical uncertainty in the model, it can be difficult to validate and compare the results of a model with those of an experiment. Model validation is the process of determining the degree to which a model is an accurate representation of the true value in the real world. The results of a model validation study can be used to either quantify the uncertainty that exists within the model or to improve/calibrate the model. However, the model validation process can become complicated if there is uncertainty in the simulation (model) and/or experimental outcomes. These uncertainties can be in the form of aleatory (uncertainties which a probability distribution can be applied for likelihood of drawing values) or epistemic uncertainties (no knowledge, inputs drawn within an interval). Four different approaches are used for addressing model validation and calibration: 1) the area validation metric (AVM), 2) a modified area validation metric (MAVM) with confidence intervals, 3) the standard validation uncertainty from ASME V&V 20, and 4) Bayesian updating of a model discrepancy term. Details are given for the application of the MAVM for accounting for small experimental sample sizes. To provide an unambiguous assessment of these different approaches, synthetic experimental values were generated from computational fluid dynamics(CFD) simulations of a multi-element airfoil. A simplified model was then developed using thin airfoil theory. This simplified model was then assessed using the synthetic experimental data. The quantities examined include the two dimensional lift and moment coefficients for the airfoil with varying angles of attack and flap deflection angles. Each of these validation/calibration approaches will be assessed for their ability to tightly encapsulate the true value in nature at locations both where experimental results are provided and prediction locations where no experimental data are available. Also of interest was to assess how well each method could predict the uncertainties about the simulation outside of the region in which experimental observations were made, and model form uncertainties could be observed.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/91903 |
Date | 19 July 2019 |
Creators | Whiting, Nolan Wagner |
Contributors | Aerospace and Ocean Engineering, Roy, Christopher J., House, Leanna L., Xiao, Heng |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0021 seconds