Neste trabalho estudamos um problema parabólico e um problema hiperbólico que não admitem unicidade de solução. Após garantir a existência de solução para cada um desses problemas, analisamos o comportamento assintótico de suas soluções por meio da teoria do atrator de trajetórias. Nossos resultados principais demonstram, sob hipóteses apropriadas, a semicontinuidade superior das famílias de atratores de trajetórias quando o coeficiente de difusão é grande. / In this work we study a parabolic problem and a hyperbolic problem that not admit uniqueness of solution. After to ensure existence of solution for each of these problems, we analyze the asymptotic behavior of their solutions by means of the theory of trajectory attractors. Our main results demonstrate, under appropriate assumptions, the upper semicontinuity of families of trajectory attractors when the diffusion coefficient is large.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-04092012-153232 |
Date | 01 August 2012 |
Creators | Ricardo de Sá Teles |
Contributors | Luiz Augusto Fernandes de Oliveira, Ma To Fu, Claudia Buttarello Gentile, Arnaldo Simal do Nascimento, Antonio Luiz Pereira |
Publisher | Universidade de São Paulo, Matemática Aplicada, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds