Return to search

Detecção de novidade com aplicação a fluxos contínuos de dados / Novelty detection with application to data streams

Neste trabalho a detecção de novidade é tratada como o problema de identificação de conceitos emergentes em dados que podem ser apresentados em um fluxo contínuo. Considerando a relação intrínseca entre tempo e novidade e os desafios impostos por fluxos de dados, uma nova abordagem é proposta. OLINDDA (OnLIne Novelty and Drift Detection Algorithm) vai além da classficação com uma classe e concentra-se no aprendizado contínuo não-supervisionado de novos conceitos. Tendo aprendido uma descrição inicial de um conceito normal, prossegue à análise de novos dados, tratando-os como um fluxo contínuo em que novos conceitos podem aparecer a qualquer momento. Com o uso de técnicas de agrupamento, OLINDDA pode empregar diversos critérios de validação para avaliar grupos em termos de sua coesão e representatividade. Grupos considerados válidos produzem conceitos que podem sofrer fusão, e cujo conhecimento é continuamente incorporado. A técnica é avaliada experimentalmente com dados artificiais e reais. O módulo de classificação com uma classe é comparado a outras técnicas de detecção de novidade, e a abordagem como um todo é analisada sob vários aspectos por meio da evolução temporal de diversas métricas. Os resultados reforçam a importância da detecção contínua de novos conceitos, assim como as dificuldades e desafios do aprendizado não-supervisionado de novos conceitos em fluxos de dados / In this work novelty detection is treated as the problem of identifying emerging concepts in data that may be presented in a continuous ow. Considering the intrinsic relationship between time and novelty and the challenges imposed by data streams, a novel approach is proposed. OLINDDA, an OnLIne Novelty and Drift Detection Algorithm, goes beyond one-class classification and focuses on the unsupervised continuous learning of novel concepts. Having learned an initial description of a normal concept, it proceeds to the analysis of new data, treating them as a continuous ow where novel concepts may appear at any time. By the use of clustering techniques, OLINDDA may employ several validation criteria to evaluate clusters in terms of their cohesiveness and representativeness. Clusters considered valid produce concepts that may be merged, and whose knowledge is continuously incorporated. The technique is experimentally evaluated with artificial and real data. The one-class classification module is compared to other novelty detection techniques, and the whole approach is analyzed from various aspects through the temporal evolution of several metrics. Results reinforce the importance of continuous detection of novel concepts, as well as the dificulties and challenges of the unsupervised learning of novel concepts in data streams

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-02042008-112027
Date20 February 2008
CreatorsEduardo Jaques Spinosa
ContributorsAndré Carlos Ponce de Leon Ferreira de Carvalho, João Manuel Portela da Gama, Teresa Bernarda Ludermir, Maria Carolina Monard, Ivan Nunes da Silva, Gerson Zaverucha
PublisherUniversidade de São Paulo, Ciências da Computação e Matemática Computacional, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0093 seconds