Moisture dynamics in the critical zone have significant implications for a variety of hydrologic processes, from water availability to plants, to infiltration and groundwater recharge rates. These processes are perturbed by events such as wildfires, which may have long-lasting impacts. In September 2011, the most destructive wildfire in Texas history occurred in and around Bastrop State Park, which was significantly affected; thus this is a rare opportunity to study soil moisture under such burned conditions. A 165 m long transect, bridging burned and unburned areas, was established within the “Lost Pines” of the park. Soil moisture was monitored using a variety of methods, including 2D electrical resistivity imaging (using dipole-dipole and Schlumberger configurations), handheld measurements using a ThetaProbe, and readings at depth using PR2 profile probes. Field measurements were collected at approximately one-month intervals to study temporal and seasonal effects on soil moisture. Greater soil moisture was found near the ground surface at the heavily burned end of the transect, where the majority of trees were killed by the fire and grasses now dominate, and lower near-surface soil moisture and higher resistivity at the opposite end of the transect, which is still populated by pine trees. These variations can likely be attributed to the vegetative variations between the two ends of the transect, with trees consuming more water at one end and the ground cover of grasses and mosses consuming less water and helping reduce evaporation at the burned end. Soil texture differences could also be a factor in greater soil moisture retention at the burned end of the transect. Given the higher moisture throughout the soil profile at the burned end of the transect, this could be an indication of greater infiltration, and could increase recharge, at least in the short term. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/21841 |
Date | 30 October 2013 |
Creators | Kanarek, Michael Richard |
Source Sets | University of Texas |
Language | en_US |
Detected Language | English |
Format | application/pdf |
Page generated in 0.0023 seconds