Embedded systems can be found everywhere in our daily lives. Due to the great variety of embedded devices, the platform independent Java language provides a good solution for embedded system development. Java virtual machine (JVM) is the most critical component of all kinds of Java platforms. Hence, it is extremely important to study the special design of JVM for embedded systems. The key challenges of designing a successful JVM for embedded systems are energy efficiency, time predictability and performance, which are investigated in this dissertation, respectively. We first study the energy issue of JVM on embedded systems. With a cycle-accurate simulator, we study each stage of Java execution separately to test the effects of different configurations in both software and hardware. After that, an alternative Adaptive Optimization System (AOS) model is introduced, which estimated the cost/benefit using energy data instead of running time. We tuned the parameters of this model to study how to improve the dynamic compilation and optimization in Jikes RVM in terms of energy consumption. In order to further reduce the energy dissipation of JVM on embedded systems, we study adaptive drowsy cache control for Java applications, where JVM can be used to make better decision on drowsy cache control. We explore the impact of different phases of Java applications on the timing behavior of cache usage. Then we propose several techniques to adaptively control drowsy cache to reduce energy consumption with minimal impact on performance. It is observed that traditional Java code generation and instruction fetch path are not efficient. So we study three hardware-based code caching strategies, which attempt to write and read the dynamically generated Java code faster and more energy-efficiently. Time predictability is another key challenge for JVM on embedded systems. So we exploit multicore computing to reduce the timing unpredictability caused by dynamic compilation and adaptive optimization. Our goal is to retain high performance comparable to that of traditional dynamic compilation and, at the same time, obtain better time predictability for JVM. We study pre-compilation techniques to utilize another core more efficiently. Furthermore, we develop Pre-optimization on Another Core (PoAC) scheme to replace AOS in Jikes JVM, which is very sensitive to execution time variation and impacts time predictability greatly. Finally, we propose two new approaches that automatically parallelizes Java programs at run-time, in order to meet the performance challenge of JVM on embedded systems. These approaches rely on run-time trace information collected during program execution, and dynamically recompiles Java byte code that can be executed in parallel. One approach utilizes trace information to improve traditional loop parallelization, and the other parallelizes traces instead of loop iterations.
Identifer | oai:union.ndltd.org:siu.edu/oai:opensiuc.lib.siu.edu:dissertations-1186 |
Date | 01 December 2010 |
Creators | Sun, Yu |
Publisher | OpenSIUC |
Source Sets | Southern Illinois University Carbondale |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Dissertations |
Page generated in 0.0019 seconds