A growing number of factors, including costs, technological advancements, ageing populations, and medical errors, are leading industrialized countries to invest in research on alternative solutions to improve their health-care systems and increase patients’ quality of life. Personal health systems (PHS) examplify the use of information and communication technologies that enable a paradigm shift from the traditional hospital-centered healthcare delivery model toward a preventive and person-centered approach. PHS offer the means to monitor a patient’s health using wearable, portable or implantable systems that offer ubiquitous, unobtrusive biodata acquisition, allowing remote monitoring of treatment and access to the patient’s status. Electrical bioimpedance (EBI) technology is non-invasive, quick and relatively affordable technique that can be used for assessing and monitoring different health conditions, e.g., body composition assessments for nutrition. When combined with state-of-the-art advances in sensors and textiles, EBI technologies are fostering the implementation of wearable bioimpedance monitors that use functional garments for personalized healthcare applications. This research work is focused on the development of wearable EBI-based monitoring systems for ubiquitous health monitoring applications. The monitoring systems are built upon portable monitoring instrumentation and custom-made textile electrode garments. Portable EBI-based monitors have been developed using the latest material technology and advances in system-on-chip technology. For instance, a portable EBI spectrometer has been validated against a commercial spectrometer for total body composition assessment using functional textile electrode garments. The development of wearable EBI-based monitoring units using functional garments and dry textile electrodes for body composition assessment and respiratory monitoring has been shown to be a feasible approach. The availability of these measurement systems indicates progress toward the real implementation of personalized healthcare systems. / <p>QC 20170517</p>
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-207135 |
Date | January 2017 |
Creators | Ferreira, Javier |
Publisher | KTH, Medicinsk teknik, Högskolan i Borås, Stockholm |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-STH ; 2017:6 |
Page generated in 0.0025 seconds