A supersonic wind tunnel, with a 20" x 20'" test section cross sectional area, was designed and constructed at the Techsburg Wind Tunnel Facility in order to determine the lift and drag on irregularly shaped fragments in supersonic flow. Prior to beginning the wind tunnel design process, a blowdown analysis model was created in order to determine the influence of a number of parameters on tunnel run time and test gas properties throughout the tunnel circuit. The design of the settling chamber, test section, supersonic nozzles, diffuser, and exhaust are presented in this thesis. Diffuser performance has a large influence on wind tunnel efficiency and run time. Therefore, significant efforts should be taken in order to attain the highest possible pressure recovery within the diffuser. The design of wind tunnel components, as well as their stress analysis, was conducted using SolidWorks. The control valve and silencer were sized and selected for the expected tunnel operating conditions. Since the control valve tends to encompass a significant portion of the overall tunnel cost, care must be taken to ensure it has a large enough flow capacity to produce the desired test conditions. Also, attempts must be made to accurately predict the total pressure loss through the silencer, since this loss can have a large impact on the total pressure ratio necessary to produce the design Mach number. Upon completion of the design process, the supersonic wind tunnel was assembled, and shakedown testing was conducted. During shakedown testing it was determined that the wind tunnel was capable of producing Mach 2 flow in the test section. Following shakedown testing, a flow survey was conducted in order to ensure uniform Mach number flow exists throughout the region occupied by the fragments. Based on the flow survey it was determined that within the middle 60% of the test section, the average Mach number was 1.950 and varied by only 0.56% within this region. Two irregularly shaped fragments were tested at Mach 2 flow, over an effective 360° pitch sweep, with wind tunnel runs performed every 10 degrees. Based on the measured force data for both fragments, the lift appeared to follow a sinusoidal curve, with minimum values at 0, 90, and 180° balance pitch angle, and maximum values occurring around 45 and 135° pitch angle. The drag force was observed to follow a gradual curve with minimum values at 0 and 180° balance pitch angle, as expected since the fragment presented area is generally least in this orientation. The maximum drag was found to occur at a balance pitch angle of 90°, once again as expected since the fragment presented area is generally greatest at this angle. It was also observed that the fragment drag tended to be greater for a fragment orientation which places the concave side of the fragment into the direction of the flow. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/76968 |
Date | 17 May 2011 |
Creators | Larson, Christopher Whitford |
Contributors | Mechanical Engineering, Ng, Wing Fai, Diller, Thomas E., Dancey, Clinton L. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | en_US |
Detected Language | English |
Type | Thesis, Text |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0019 seconds