Return to search

Single and Two-Step Adsorption of Alkanethiolate and Sulfide Layers on InSb and InGaAs in the Liquid Phase

III-V semiconductors have higher charge carrier mobilities than silicon and are used in photovoltaic devices, optical sensors, and emitters. The high injection velocities obtained with III-V channels allow for faster transistors with low power consumption.
However, the large-scale implementation in electronic devices is currently limited by the defective interface formed between III-Vs and their oxides. Clean III-V surfaces are highly reactive in air and form amorphous oxides that lead to a high density of dangling bonds. Satisfying these dangling bonds has been associated with an improvement in electrical performance, directing the development of strategies that decrease the surface reactivity (chemical passivation) and the density of surface states that cause power dissipation (electrical passivation). Sulfur bonds easily to III-V surfaces and has been used to chemically and electrically passivate GaAs. In this work, we investigated liquid phase sulfur chemistries in the chemical passivation of clean InSb(100) and In0.53Ga0.47As(100) surfaces terminated by their group V elements. Our strategy consisted of maximizing the number of bonds between sulfur and antimony or arsenic. A long alkane chain thiol, 1-eicosanethiol (ET, 20 carbon atoms), was used to produce a hydrophobic surface and deposit a dense organic layer by taking advantage of the van der Waals interactions between thiol molecules. The first part of the study involved the optimization of the thiol deposition process on InSb. Self-assembled alkanethiol monolayers were formed by immersing clean InSb substrates in ET solutions in ethanol for 20 h. The layers prevented the formation of detectable oxides for 20 min based on the O Auger x-ray photoelectron spectroscopy (XPS) peak. The thiol layer was completely removed by heating the surface to 227 C in vacuum. In the second part of the study, a 20 h ET deposition was performed on In0.53Ga0.47As(100), and re-oxidation was prevented for up to 4 min based on the O 1s XPS peak. The alkanethiolate layer was removed by heating the samples to 350 C in vacuum. The sulfur coverage after 20 min and 20 h ET depositions was increased by performing a second immersion in (NH4)2S without modifying the thickness of the layer. The best process studied consisted of a 20 h immersion in ET solution followed by a short (NH4)2S step, preventing the formation of oxides for up to 9 min. This is due to the presence of available surface sites and weakly bonded molecules in the layer after a long 20 h ET process. The chemical passivation effect is not uniquely influenced by surface termination, roughness, or lattice constant, but is rather a result of a combination of these factors. Future work will involve the fabrication and electrical characterization of III-V devices modified with various chemical passivation strategies.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/626327
Date January 2017
CreatorsContreras, Yissel, Contreras, Yissel
ContributorsMuscat, Anthony J., Muscat, Anthony J., Gervasio, Dominic F., Guzman, Roberto Z., Raghavan, Srini
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0014 seconds