>Magister Scientiae - MSc / In the wide search for advanced materials for next generation lithium-ion batteries, lithium manganese orthosilicate, Li₂MnSiO₄ is increasingly gaining attention as a potential cathode material by virtue of its ability to facilitate the extraction of two lithium ions per formula unit, resulting in a two-electron redox process involving Mn²⁺/Mn³⁺ and Mn³⁺/Mn⁴⁺ redox couples. This property confers on it, a higher theoretical specific capacity of 333 mAhg⁻¹ which is superior to the conventional layered LiCoO₂ at 274 mAhg⁻¹ and the commercially available olivine LiFePO₄ at 170 mAhg⁻¹. Its iron analogue, Li₂FeSiO₄ has only 166 mAhg⁻¹ capacity as the Fe⁴⁺ oxidation state is difficult to access. However, the capacity of Li₂MnSiO₄ is not fully exploited in practical galvanostatic charge-discharge tests due to the instability of the delithiated material which causes excessive polarization during cycling and its low intrinsic electronic conductivity. By reducing the particle size, the electrochemical performance of this material can be enhanced since it increases the surface contact between the electrode and electrolyte and further reduces the diffusion pathway of lithium ions. In this study, a versatile hydrothermal synthetic pathway was employed to produce nanoparticles of Li₂MnSiO₄, by carefully tuning the reaction temperature and the concentration of the metal precursors. The nanostructured cathode material was further coated with a thin film of aluminium oxide in order to modify its structural and electronic properties. The synthesized materials were characterized by microscopic (HRSEM and HRTEM), spectroscopic (FTIR, XRD, SS-NMR, XPS) and electrochemical techniques (CV, SWV and EIS). Microscopic techniques revealed spherical morphologies with particle sizes in the range of 21-90 nm. Elemental distribution maps obtained from HRSEM for the novel cathode material showed an even distribution of elements which will facilitate the removal/insertion of Li-ions and electrons out/into the cathode material. Spectroscopic results (FTIR) revealed the vibration of the Si-Mn-O linkage, ascertaining the complete insertion of Mn ions into the SiO₄⁴⁻ tetrahedra. XRD and ⁷Li MAS NMR studies confirmed a Pmn21 orthorhombic crystal pattern for the pristine Li₂MnSiO₄ and novel Li₂MnSiO₄/Al₂O₃ which is reported to provide the simplest migratory pathway for Li-ions due to the high symmetrical equivalence of all Li sites in the unit cell, thus leading to high electrochemical reversibility and an enhancement in the overall performance of the cathode materials. The divalent state of manganese present in Li₂Mn²⁺SiO₄ was confirmed by XPS surface analysis. Scan rate studies performed on the novel cathode material showed a quasi-reversible electron transfer process. The novel cathode material demonstrated superior electrochemical performance over the pristine material. Charge/discharge capacity values calculated from the cyclic voltammograms of the novel and pristine cathode materials showed a higher charge and discharge capacity of 209 mAh/g and 107 mAh/g for the novel cathode material compared to 159 mAh/g and 68 mAh/g for the pristine material. The diffusion coefficient was one order of magnitude higher for the novel cathode material (3.06 x10⁻⁶ cm2s⁻¹) than that of the pristine material (6.79 x 10⁻⁷ cm2s⁻¹), with a charge transfer resistance of 1389 Ω and time constant (τ) of 1414.4 s rad⁻¹ for the novel cathode material compared to 1549 Ω and 1584.4 s rad-1 for the pristine material. The higher electrochemical performance of the novel Li₂MnSiO₄/All₂O₃ cathode material over the pristine Li₂MnSiO₄ material can be attributed to the alumina nanoparticle surface coating which considerably reduced the structural instability intrinsic to the pristine Li₂MnSiO₄ cathode material and improved the charge transfer kinetics.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uwc/oai:etd.uwc.ac.za:11394/5136 |
Date | January 2015 |
Creators | Ndipingwi, Miranda Mengwi |
Contributors | Iwuoha, Emmanuel, Ikpo, Chinwe |
Publisher | University of the Western Cape |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Rights | University of the Western Cape |
Page generated in 0.002 seconds