Return to search

On eigenvalues of the Schrödinger operator with a complex-valued polynomial potential

In this thesis, we generalize a recent result of A. Eremenko and A. Gabrielov on irreducibility of the spectral discriminant for the Schroedinger equation with quartic potentials. In the first paper, we consider the eigenvalue problem with a complex-valued polynomial potential of arbitrary degree d and show that the spectral determinant of this problem is connected and irreducible. In other words, every eigenvalue can be reached from any other by analytic continuation. We also prove connectedness of the parameter spaces of the potentials that admit eigenfunctions satisfying k > 2 boundary conditions, except for the case d is even and k = d/2. In the latter case, connected components of the parameter space are distinguished by the number of zeros of the eigenfunctions. In the second paper, we only consider even polynomial potentials, and show that the spectral determinant for the eigenvalue problem consists of two irreducible components. A similar result to that of paper I is proved for k boundary conditions.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-52064
Date January 2010
CreatorsAlexandersson, Per
PublisherMatematiska institutionen, Stockholm : Department of Mathematics
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationResearch Reports in Mathematics, 1401-5617 ; 5

Page generated in 0.0016 seconds