[pt] O monitoramento oficial do desmatamento na Amazônia brasileira tem dependido tradicionalmente de especialistas humanos que avaliam visualmenteas imagens de sensoriamento remoto e rotulam cada pixel individual comodesmatamento ou não desmatamento. Essa metodologia é obviamente carae demorada devido à vasta área monitorada. A razão para não utilizar métodos totalmente automáticos para a tarefa é a necessidade da maior precisãopossível nos números oficiais de desmatamento. Neste trabalho é propostauma alternativa semi-automática baseada em aprendizagem profunda, naqual uma rede neural profunda é primeiro treinada com imagens existentes e referências de anos anteriores, e empregada para realizar detecção dedesmatamento em imagens recentes. Após a inferência, a incerteza nos resultados em nível de pixel da rede é estimada e assume-se que os resultadosda classificação com baixa incerteza podem ser confiáveis. As demais regiõesde alta incerteza, que correspondem a uma pequena porcentagem da áreade teste, são então submetidas à pós-classificação, por exemplo, um procedimento de auditoria realizado visualmente por um especialista humano.Desta forma, o esforço de etiquetagem manual é bastante reduzido.Investigamos várias estratégias de estimativa de incerteza, incluindo abordagens baseadas em confiança, Monte Carlo Dropout (MCD), conjuntosprofundos e aprendizagem evidencial, e avaliamos diferentes métricas de incerteza. Além disso, conduzimos uma análise abrangente para identificar ascaracterísticas das áreas florestais que contribuem para a elevada incerteza.Ilustramos as principais conclusões da análise em 25 polígonos selecionados em quatro locais-alvo, que exemplificam causas comuns de incerteza.Os sítios-alvo estão localizados em áreas de estudo desafiadoras nos biomasbrasileiros da Amazônia e do Cerrado. Através da avaliação experimental nesses locais, demonstramos que a metodologia semi-automática proposta atinge valores impressionantes de pontuação F1 que excedem 97 por cento, aomesmo tempo que reduz a carga de trabalho de auditoria visual para apenas 3 por cento da área alvo. O código desenvolvido para este estudo está disponível emhttps://github.com/DiMorten/deforestation_uncertainty. / [en] Official monitoring of deforestation in the Brazilian Amazon has relied traditionally on human experts who visually evaluate remote sensing images
and label each individual pixel as deforestation or no deforestation. That
methodology is obviously costly and time-consuming due to the vast monitored area. The reason for not using fully automatic methods for the task is
the need for the highest possible accuracies in the authoritative deforestation figures. In this work, a semi-automatic, deep learning-based alternative
is proposed, in which a deep neural network is first trained with existing images and references from previous years, and employed to perform
deforestation detection on recent images. After inference, the uncertainty
in the network s pixel-level results is estimated, and it is assumed that
low-uncertainty classification results can be trusted. The remaining high-uncertainty regions, which correspond to a small percentage of the test
area, are then submitted to post classification, e.g., an auditing procedure
carried out visually by a human specialist. In this way, the manual labeling
effort is greatly reduced.
We investigate various uncertainty estimation strategies, including
confidence-based approaches, Monte Carlo Dropout (MCD), deep ensembles and evidential learning, and evaluate different uncertainty metrics.
Furthermore, we conduct a comprehensive analysis to identify the characteristics of forest areas that contribute to high uncertainty. We illustrate the main conclusions of the analysis upon 25 selected polygons on
four target sites, which exemplify common causes of uncertainty. The target sites are located in challenging study areas in the Brazilian Amazon
and Cerrado biomes. Through experimental evaluation on those sites, we
demonstrate that the proposed semi-automated methodology achieves impressive F1-score values which exceeds 97 percent, while reducing the visual auditing workload to just 3 percent of the target area. The current code is available
at https://github.com/DiMorten/deforestation_uncertainty.
Identifer | oai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:66029 |
Date | 19 February 2024 |
Creators | JORGE ANDRES CHAMORRO MARTINEZ |
Contributors | RAUL QUEIROZ FEITOSA |
Publisher | MAXWELL |
Source Sets | PUC Rio |
Language | English |
Detected Language | English |
Type | TEXTO |
Page generated in 0.0025 seconds