[pt] Este trabalho aborda o problema da Localização e Mapeamento Simultâneos em ambientes estruturados, utilizando um robô móvel equipado com sonares, bússola eletrônica e encoders. Na modelagem sugerida há a construção do mapa do ambiente e a localização do robô de forma interativa. O método proposto, denominado de LMS-H (Localização e Mapeamento Simultâneos - Híbrido), faz uso de duas formas de representação do ambiente: Mapa de Ocupação em Grade e Representação Contínua. O Mapa de Ocupação em Grade divide o ambiente em pequenas partes iguais, classificando-as em ocupadas ou vazias. A Representação Contínua utiliza retas para representar os planos detectados no ambiente, formando um mapa em duas dimensões e cada reta do mapa é considerada um marco. Sempre que um plano é novamente detectado pelo robô a reta correspondente a ele é recalculada com os novos pontos obtidos e a posição do robô é atualizada via Filtro de Kalman Estendido. A eficácia do método foi comprovada através de seis estudos de caso: três em ambientes virtuais e três em ambientes reais. Os estudos de casos em ambientes reais foram realizados utilizando-se um protótipo feito sob a plataforma LEGO Mindstorms. Os resultados obtidos comprovaram a eficácia do método proposto. / [en] This work addresses the problem of Simultaneous Localization and Mapping in structured environments using a mobile robot equipped with sonar, electronic compass and encoders. In the proposed modeling there are the construction of the environment map and the robot localization interactively. The proposed method, called H-SLAM (Hybrid - Simultaneous Localization and Mapping), makes use kinds of environment representation: Occupancy Grid Map and Continuous Representation. The Occupancy Grid Map divides the environment into small equal parts, and classifies it as occupied or empty. The Continuous Representation uses lines to represent detected planes in the environment, forming a two-dimensional map. Each line of the map is considered a landmark. Every time a plan is redetected by the robot the corresponding line to it is rebuild with the new points obtained and the robot s position is updated through Extended Kalman Filter. The model effectiveness was proved with computer simulations in three virtual environments. Using a prototype developed with LEGO Mindstorms platform three other experiments were also performed in real environments. The results demonstrated the effectiveness of the proposed method.
Identifer | oai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:21009 |
Date | 18 January 2013 |
Creators | ALAN PORTO BONTEMPO |
Contributors | MARLEY MARIA BERNARDES REBUZZI VELLASCO |
Publisher | MAXWELL |
Source Sets | PUC Rio |
Language | Portuguese |
Detected Language | Portuguese |
Type | TEXTO |
Page generated in 0.002 seconds