Return to search

[pt] OTIMIZAÇÃO TOPOLÓGICA DE ESTRUTURAS HIPERELÁSTICAS BASEADA EM MÉTODOS DE INTERPOLAÇÃO / [en] TOPOLOGY OPTIMIZATION OF HYPERELASTIC STRUCTURES BASED ON INTERPOLATION METHODS

[pt] O design otimizado de estruturas considerando não-linearidades tem sido amplamente pesquisado nas décadas recentes. A análise de elementos finitos aplicada à otimização topológica é prejudicada pela deformação excessiva de elementos de baixa densidade sob alta compressão, o que impede o processo
de encontrar uma solução ótima. Dois métodos, o esquema Interpolação de Energia e a técnica de Hiperelasticidade Aditiva, são implementados para superar essa dificuldade no problema de minimização da flexibilidade, e modelos de materiais hiperelásticos são usados para investigar suas influências na topologia otimizada. O Método das Assíntotas Móveis é usado para atualizar as variáves de projeto cujas sensibilidades foram calculadas pelo método adjunto. A equação de estado é resolvida através do método de Newton-Raphson com um incremento de carga ajustável para reduzir o custo computacional. Resultados de dois problemas de referência são comparado com aqueles já estabelecidos na literatura. O uso de diferentes modelos hiperelásticos apresentou pouca influência no design final da estrutura.
O método de Interpolação de Energia foi capaz de convergir para cargas muito maiores que o método padrão, enquanto a Hiperelasticidade Aditiva apresentou dificuldades de convergência em estado plano de deformação. / [en] The optimized design of structures considering nonlinearities has been widely researched in the recent decades. The finite element analysis applied to topology optimization is jeopardized by the excessive deformation of low-density elements under high compression, which hinders the process of finding an optimal solution. Two methods, the Energy Interpolation scheme and the Additive Hyperelasticity technique, are implemented to overcome this difficulty in the minimum compliance problem, and hyperelastic material models are used to investigate their influence on the optimized topology. The Method of Moving Asymptotes is used to update the design variables whose sensitivities were calculated from the adjoint method. The state equation is solved through the Newton-Raphson method with an adjusting load step to reduce computational cost. Results for two benchmark problems are compared with those already established in the literature. The use of different hyperelastic models presented little influence on the
final design of the structure. The Energy Interpolation method was able to converge for much higher loads than the default method, while the Additive Hyperelasticity presented convergence difficulties in plane strain.

Identiferoai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:52861
Date21 May 2021
CreatorsVINICIUS OLIVEIRA FONTES
ContributorsANDERSON PEREIRA, ANDERSON PEREIRA, ANDERSON PEREIRA, ANDERSON PEREIRA
PublisherMAXWELL
Source SetsPUC Rio
LanguageEnglish
Detected LanguagePortuguese
TypeTEXTO

Page generated in 0.0028 seconds