[pt] O mundo vive hoje uma era de transformação digital resultante da chamada indústria 4.0 ou quarta revolução industrial. Nesta fase, a tecnologia tem exercido um papel cada vez mais estratégico no desempenho das organizações. Estes avanços tecnológicos têm revolucionado o processo de tomada de decisão na gestão e operação de cadeias de suprimentos. Neste contexto, esta dissertação apresenta uma metodologia de apoio à decisão na gestão de estoques, que combina multi-criteria decision making (MCDM) e machine learning (ML). A princípio, é realizada uma revisão sistemática da literatura para analisar como estas duas abordagens são aplicadas na gestão de estoques. Os resultados são complementados com um scoping review abrangendo a previsão de demanda. Inicia-se então um estudo de caso, aplicado em uma ferrovia de transporte de cargas. É aplicado, inicialmente, o método MCDM combinado Fuzzy AHP Vikor para ranquear os stock keeping units (SKUs) em ordem de criticidade. O passo seguinte é a aplicação do método de ML combinado GA-ANN, artificial neural network com genetic algorithm, com o objetivo de realizar a previsão de demanda em um piloto com alguns dos itens mais críticos. A etapa final consiste em estruturar um dashboard gerencial, integrando os resultados das etapas anteriores. Dentre os resultados alcançados, a partir do modelo proposto, observa-se considerável melhora na performance da previsão de demanda dos SKUs selecionados. Além disso, a integração entre as abordagens e implementação em um dashboard gerencial permitiu o desenvolvimento de um modelo semiautomático de tomada de decisão na gestão de estoques. / [en] The world is experiencing an era of digital transformation resulting from the industry 4.0 or fourth industrial revolution. In this period, technology has played an increasingly strategic role in the performance of organizations. These technological advances have revolutionized the decision-making process in the management and operation of supply chains. In this context, this dissertation presents a methodology to support decision-making in inventory management, which combines multi-criteria decision-making (MCDM) and machine learning (ML). At first, there is a systematic literature review in order to analyze how these two approaches are applied in inventory management. The results are complemented with a scoping review that includes the demand forecasting. A case study is then applied to a freight transport railway. Initially, the MCDM combined Fuzzy AHP Vikor method is applied to rank stock keeping units (SKUs) in degrees of criticality. The next step is the application of the ML combined GA-ANN method, artificial neural network with genetic algorithm, for the purpose of demand forecasting in a pilot with some of the most critical items. The final step is to structure a management dashboard, integrating the results of the previous steps. Among the results achieved from the proposed model, there is a considerable improvement in the performance of the demand forecasting for the selected SKUs. In addition, the integration between approaches and implementation in a management dashboard allowed the development of a semiautomatic model for decision-making in inventory management.
Identifer | oai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:53571 |
Date | 06 July 2021 |
Creators | GUILHERME HENRIQUE DE PAULA VIDAL |
Contributors | LUIZ FELIPE RORIS RODRIGUEZ SCAVARDA DO CARMO |
Publisher | MAXWELL |
Source Sets | PUC Rio |
Language | Portuguese |
Detected Language | English |
Type | TEXTO |
Page generated in 0.0025 seconds