[pt] Este trabalho apresenta um novo modelo térmico analítico que acopla poço e reservatório, constituído por um sistema combinado de reservatório, revestimento e coluna de produção. As soluções analíticas consideram fluxo monofásico de fluido pouco compressível em um reservatório homogêneo e infinito e fornecem dados transitórios de temperatura e pressão ao longo do poço para testes de fluxo e de crescimento de pressão, considerando efeitos Joule-Thomson, de expansão adiabática, de condução e convecção. A massa específica do fluido é modelada como função da temperatura e a solução analítica faz uso da transformada de Laplace para resolver a equação diferencial de fluxo de calor transiente, assumindo o termo aT⁄az totalmente transiente. Com relação à análise de transientes de pressão (PTA), dados de pressão impactados por variações térmicas podem levar à interpretação de falsas heterogeneidades geológicas, pois a perda de calor durante a estática proporciona um aumento da pressão exercida pela coluna de fluido, devido ao incremento de sua massa específica, além de uma contração da coluna de
produção, provocando uma mudança na posição do registrador. Esses efeitos podem fazer com que um reservatório homogêneo seja erroneamente interpretado como um reservatório de dupla porosidade, resultando em conclusões inválidas para a modelagem geológica. Os resultados deste trabalho são comparados com a resposta de um simulador comercial não-isotérmico e impactos nas interpretações são extensivamente investigados. Adicionalmente, um estudo de caso de campo é fornecido para validar as soluções analíticas propostas. Comparado à Literatura, o modelo proposto fornece perfis transientes de temperatura mais acurados. / [en] This work presents a new coupled transient-wellbore/reservoir thermal analytical model, consisting of a reservoir/casing/tubing combined system. The analytical solutions consider flow of a slightly compressible, single-phase fluid in a homogeneous infinite-acting reservoir system and provide temperature- and
pressure-transient data for drawdown and buildup tests at any gauge location along the wellbore, accounting for Joule-Thomson, adiabatic fluid-expansion, conduction and convection effects. The wellbore fluid mass density is modeled as a function of temperature and the analytical solution makes use of the Laplace transformation to solve the transient heat-flow differential equation, accounting for a rigorous
transient wellbore-temperature gradient aT⁄az. Regarding pressure transient analysis (PTA), thermal impacted pressure data may lead to the interpretation of false geological heterogeneities, since the heat loss during the buildup period provides an increase in the pressure exerted by the wellbore-fluid column, due to an increase in the oil mass density, and a change in tubing length, consequently causing a change in the gauge location. These effects can make a homogeneous reservoir be wrongly interpreted as a double-porosity reservoir, yielding invalid conclusions to geological modeling. Results are compared to the response of a commercial non-isothermal simulator and thermal impacts on PTA interpretations are thoroughly investigated. In addition, a field case study is also provided to verify the proposed analytical solutions. The proposed model provides more accurate transient temperature flow profiles along the wellbore when compared to previous models in Literature.
Identifer | oai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:35848 |
Date | 13 December 2018 |
Creators | MAURICIO DA SILVA CUNHA GALVAO |
Contributors | MARCIO DA SILVEIRA CARVALHO |
Publisher | MAXWELL |
Source Sets | PUC Rio |
Language | English |
Detected Language | Portuguese |
Type | TEXTO |
Page generated in 0.0023 seconds