Hepatitis B virus (HBV) is a major etiologic agent of chronic liver disease (CLD) and hepatocellular carcinoma (HCC). The virally encoded X antigen, HBx, contributes importantly to the development of HCC through its trans-activating role in various signal transduction pathways. Pathways implicated in stem cell self-renewal also contribute to carcinogenesis. Thus, experiments were designed to test if HBx triggers malignant transformation by promoting properties that are characteristic of cancer stem cells (CSCs). To test this hypothesis, HBx expressing (HepG2X) and control (HepG2CAT) human cell lines were assayed for phenotypic and molecular characteristics of "stemness." Western blotting of protein extracts from HepG2X and HepG2CAT cells as well as immunohistochemical staining of HCC and adjacent liver tissue sections from HBV infected patients showed up-regulation of "stemness"-associated (EpCAM and beta-catenin) and "stemness" (Oct-4, Nanog, Klf-4) markers by HBx. Moreover, HBx stimulated cell migration and spheroid formation. HBx expression was also associated with depressed levels of E-cadherin and subsequent activation of beta-catenin and EpCAM. Results from ChIP-chip data performed previously in this lab suggest an associative link between HBx and the expression of epigenetic co-repressor, mSin3A, which is known to repress E-cadherin when complexed with histone deacetylases. Thus, experiments were also designed to test if HBx represses the E-cadherin gene (CDH1) through histone deacetylation by the mSin3A/HDAC complex. In HepG2X cells, decreased levels of E-cadherin and elevated levels of mSin3A were detected. Reciprocal immunoprecipitation with anti-HBx and anti-mSin3A demonstrated mutual binding. Further, HBx-mSin3A co-localization was showed by immunofluorescent staining. Chromatin immunoprecipitation revealed that HBx mediated the recruitment of the mSin3A/HDAC complex to the CDH1 promoter. HDAC inhibition by Trichostatin A treatment restored E-cadherin expression. Thus, HBx-associated epigenetic repression of E-cadherin and up-regulated expression of multiple "stemness" markers support the hypothesis that HBx contributes to hepatocarcinogenesis, at least in part, by promoting changes in gene expression that are characteristic of CSCs. This work is the first to propose that HBV promotes "stemness" in the pathogenesis of HCC. / Biology
Identifer | oai:union.ndltd.org:TEMPLE/oai:scholarshare.temple.edu:20.500.12613/1243 |
Date | January 2012 |
Creators | Friedman, Tiffany Ilene |
Contributors | Feitelson, Mark, Balciunas, Darius, Giordano, Antonio, MD, Korzekwa, Kenneth |
Publisher | Temple University. Libraries |
Source Sets | Temple University |
Language | English |
Detected Language | English |
Type | Thesis/Dissertation, Text |
Format | 106 pages |
Rights | IN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available., http://rightsstatements.org/vocab/InC/1.0/ |
Relation | http://dx.doi.org/10.34944/dspace/1225, Theses and Dissertations |
Page generated in 0.0022 seconds