Return to search

Deep learning with multiple modalities : making the most out of available data

L’apprentissage profond, un sous domaine de l’apprentissage machine, est reconnu pour nécessiter une très grande quantité de données pour atteindre des performances satisfaisantes en généralisation. Une autre restriction actuelle des systèmes utilisant l’apprentissage machine en lien avec les données est la nécessité d’avoir accès au même type de données autant durant la phase d’entrainement du modèle que durant la phase de test de celui-ci. Dans plusieurs cas, ceci rend inutilisable en entrainement des données de modalité supplémentaire pouvant possiblement apporter de l’information additionnelle au système et l’améliorer. Dans ce mémoire, plusieurs méthodes d’entrainement permettant de tirer avantage de modalités additionnelles disponibles dans des jeux de données seulement en entrainement et non durant la phase de test seront proposées. Pour débuter, nous nous intéressons à diminuer le bruit présent dans images.. On débute le mémoire avec la technique la plus simple, soit un débruitage avant une tâche pour augmenter la capacité du système à faire cette tâche. Par la suite, deux techniques un peu plus poussées proposant de faire un débruitage guidé pour augmenter les performances d’une tâche subséquente sont présentées. On conclut finalement cette thèse en présentant une technique du nom d’Input Dropout permettant d’utiliser très facilement une modalité seulement disponible en entrainement pour augmenter les performances d’un système, et ce pour une multitude de tâches variées de vision numérique. / Deep learning, a sub-domain of machine learning, is known to require a very large amount of data to achieve satisfactory performance in generalization. Another current limitation of these machine learning systems is the need to have access to the same type of data during the training phase of the model as during its testing phase. In many cases, this renders unusable training on additional modality data that could possibly bring additional information to the system and improve it. In this thesis, several training methods will be proposed to take advantage of additional modalities available in datasets only in training and not in testing. We will be particularly interested in reducing the noise present in images. The thesis begins with the simplest technique, which is a denoising before a task to increase the system’s ability to perform a task. Then, two more advanced techniques are presented, which propose guided denoising to increase the performance of a subsequent task. Finally, we conclude this thesis by presenting a technique called Input Dropout that facilitates the use of modality only available in training to increase the performance of a system, and this for a multitude of varied computer vision tasks.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/67130
Date02 February 2021
CreatorsDe Blois, Sébastien
ContributorsGagné, Christian
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
Typemémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise
Format1 ressource en ligne (xiii, 98 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0017 seconds