The rapidly increasing demands for high data-rate applications and the growth of wireless devices connected to the internet overcrowded the radio frequency spectrum. This necessitates researchers to examine higher frequencies for wireless communication. Recently, visible light communication (VLC) has received significant attention as a viable solution to complement the RF technologies, thanks to the abundant unregulated/unlicensed spectrum it occupies while utilizing the existing lighting infrastructure. However, due to the physical properties of light, the signal cannot penetrate through obstacles, and the VLC system heavily relies on the existence of a line-of-sight (LoS) link between VLC transmitters and receivers. Optical reconfigurable intelligent surfaces (RISs) are recently proposed with the ability to dynamically control the wireless channel, which offers opportunities to enhance the VLC system performance by exploiting the non-LoS components of the VLC link. In this thesis, we highlight the recent developments in optical RISs and the various reflection characteristics they provide for the incident optical beams. Then, we investigate RIS-assisted VLC systems for both indoor and outdoor setups. Firstly, in indoor VLC systems, we study multi-user RIS-assisted VLC systems while considering specular and diffuse reflecting RISs. As the channel gain varies significantly between users in VLC systems, a large gap in performance is observed between users. We aim to maximize the VLC system achievable sum rate while ensuring network fairness. We formulate multi-objective optimization problems for both specular and diffuse reflecting RISs and propose a solution utilizing low complex genetic algorithm (GA) and particle swarm optimization (PSO). We highlight the advantages provided by the proposed algorithms in terms of achievable sum rate and network fairness performance. In addition, we assess the link outage ratio for specular reflecting RISs and assess the gains provided by diffuse RISs while considering an environment with mobile users. Secondly, in the context of outdoor VLC systems, we provide an overview of outdoor RIS-assisted VLC systems. In particular, we highlight the benefits of optical RISs to mitigate LoS blockage and VLC transceivers misalignment. More specifically, we focus on RIS-assisted unmanned aerial vehicles (UAVs)-based VLC, RIS-assisted vehicular VLC, and RIS-assisted streetlight-based communication. In addition, we highlight the use of RISs to support VLC outdoor-to-indoor communications.
Identifer | oai:union.ndltd.org:kaust.edu.sa/oai:repository.kaust.edu.sa:10754/691764 |
Date | 04 1900 |
Creators | Abdeljabar, Salah |
Contributors | Alouini, Mohamed-Slim, Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division, Parsani, Matteo, Ooi, Boon S. |
Source Sets | King Abdullah University of Science and Technology |
Language | English |
Detected Language | English |
Type | Thesis |
Rights | 2024-05-18, At the time of archiving, the student author of this thesis opted to temporarily restrict access to it. The full text of this thesis will become available to the public after the expiration of the embargo on 2024-05-18. |
Relation | N/A |
Page generated in 0.0028 seconds