Return to search

Thin-Film Polymer Nanocomposites Composed of Two-Dimensional Plasmonic Nanoparticles and Graphene

Plasmonic polymer nanocomposites contain plasmonic nanoparticles that are dispersed within a polymer. The polymer matrix strongly influences the optical properties of plasmonic nanoparticles. It is imperative to understand the interaction between plasmonic nanoparticles and polymers so that one can develop functional devices using nanocomposites. The utilization of plasmonic nanoparticles as fillers has great potential to transform critical nanotechnologies where light management is crucial, such as refractive index based nanosensors, optical coatings, and light actuated devices. Despite the great potential, effective integration of plasmonic nanoparticles with polymers remains challenging. This dissertation presents i) the effects of dielectric media on the optical properties of plasmonic nanoparticles, ii) the sensing of polymer brush formation on nanoparticles, iii) the fabrication of plasmonic nanocomposite thin-films with controlled optical properties, and iv) the development of electrically conductive membranes for electrostatic speakers.

The optical response of plasmonic nanoparticles (referred to as wavelength of localized surface plasmon resonance, λLSPR) is sensitive to changes in refractive index of the medium. The sensitivity (S) plays a critical role in determining the performance of nanoparticles in sensing applications. In this dissertation, I have conducted a systematic study on the sensitivity of plasmonic nanoparticles as a function of various parameters: shape, size, composition, initial plasmonic resonance wavelength, cross-sectional area, and aspect ratio. Among the parameters investigated, aspect ratio (R) is determined to be the key parameter that controls S, following an empirical equation, S = 46.87 R + 109.37. This relationship provides a guideline for selecting fillers in plasmonic polymer nanocomposites, and it predicts the final effect of plasmonic nanoparticles on the optical properties of polymer nanocomposites.

Plasmonic nanoparticles are employed to probe polymer grafting on the surfaces of metal nanoparticles. Using ultraviolet-visible (UV-vis) spectroscopy, I have demonstrated the quantification of polymer grafting density on the surface of plasmonic nanoparticles. The λLSPR of plasmonic nanoparticles red-shifts as the polymer concentration near the nanoparticle surface increases. I have investigated the formation of polymer brush by grafting the nanoparticles with thiolated polyethylene glycol (PEG-SH) and revealed the three–regime kinetics in situ. Importantly, this study suggests that a latent regime arises due to fast polymer adsorption and prolonged chain rearrangement on nanoparticle surfaces. When the polymer chains rearrange and chemically tether to the surface, they contract and allow more polymer chains to graft onto the particle surface until saturation. This analytical method provides a new surface probing technique for polymer brush analysis, complementary to conventional methods such as quartz crystal microbalance, atomic force microscope, and microcantilivers.

Commercial tinted glass employs expensive metalized films to reduce light transmittance but has limited spectral selectivity. To reduce the cost of metalized films and to improve the spectral selectivity, I have employed plasmonic nanoparticles in polymers to fabricate spectral-selective tinted films. First, I have synthesized two-dimensional (2D) plasmonic silver nanoparticles (AgNPs) using multi-step growth. The nanoparticles have a tunable plasmon resonance and provide spectral selectivity. The multi-step growth forgoes polymeric ligands such as poly(vinylpyrrolidone) (PVP) and solely relies on a small molecule sodium citrate. Briefly, small citrate-capped Ag seeds are first grown into small 2D AgNPs. The small 2D AgNPs are then used to grow large 2D AgNPs via multiple growth steps. The PVP-free method allows for fast synthesis of 2D AgNPs with large sizes and tunable plasmon resonance across the visible and NIR region. The 2D AgNPs are integrated with polymers to produce thin-film plasmonic nanocomposites. By controlling the planar orientation of the 2D AgNPs through layer-by-layer assembly, the polymer nancomposites have achieved reduced light transmittance and enhanced reflectance across the visible and NIR range. In contrast to conventional polymer nanocomposites where the AgNPs are randomly oriented, the thin-film polymer nanocomposites exhibit excellent control over nanoparticle density and hence the optical properties, that is, tunable light transmittance and reflectance across the visible and NIR.

Lastly, graphene is used to prepare conductive free-standing polymer thin-films. Graphene, an ultralight weight 2D material with excellent electrical and mechanical properties, has potential for use in thin-film composites essential for photovoltaics, electrostatic speakers, sensors, and touch displays. Current graphene-based composite films contain graphene flakes randomly mixed in a polymer matrix and usually possess poor mechanical and electrical properties. In this dissertation, I have developed thin-film nanocomposites comprised of chemical vapor deposited (CVD) graphene and high-performance polyetherimide (PI). The CVD-grown graphene is polycrystalline, and it cannot be used as a free-standing film. By enforcing the polycrystalline graphene with a thin layer of PI, I have prepared free-standing thin-film composites with a high aspect ratio of 105. Mechanical and electrical property characterization reveals a Young's modulus of 3.33 GPa and a resistance of 200 - 500 Ω across the membrane. A typical spring constant of the membrane is ~387 N/m. Dynamic electromechanical actuation shows that the membrane vibrates at various input frequencies. The polymer/graphene film has excellent acoustic properties, and when used as a speaker membrane, it reduces the electrical power consumption by a factor of 10-100 over the frequency range of 600–10,000 Hz. / Doctor of Philosophy / Nanomaterials such as plasmonic nanoparticles and graphene have optical, electrical, and mechanical properties that are important for light filters, sensors, printing, photovoltaics, touch screens, speakers, and biomedical devices. To fully employ the nanomaterials, a support such as polymer is often required. However, when the nanomaterials and polymers are combined, their optical, electrical, and mechanical properties drastically change. Therefore, it is imperative to understand the interactions between nanomaterials and polymers, as well as the resulting properties. Towards this goal, I have studied the sensitivity of plasmonic nanoparticles in a dielectric media and then utilized the sensitivity to investigate polymer brush formation on nanoparticle surfaces. In addition, I have investigated the integration of plasmonic nanoparticles and graphene with polymers to develop thin-film nanocomposites for window coatings and audio speakers, respectively.

Plasmonic nanoparticles can detect trace amounts of chemicals, biomolecules, toxics, warfare agents, and environmental pollutants. Sensitivity is the key criterion that determines the performance of nanoparticles for such applications. Firstly, I have conducted a detailed and comprehensive study of the plasmonic sensitivity as a function of various nanoparticle parameters including shape, size, composition, cross-sectional area, initial plasmonic resonance wavelength, and aspect ratio. I have found that the sensitivity scaled linearly with aspect ratio. The strong dependence of sensitivity on aspect ratio provides insight into designing effective plasmonic sensors. Based on the sensitivity study, I have used plasmonic nanoparticles as sensors to probe and understand the mechanism of polymer brush formation in situ. When the concentration of polymer increases on the nanoparticle surfaces, the optical response of the nanoparticle changes. Through functionalizing the plasmonic nanoparticles with polymers, I have confirmed the three different regimes of polymer brush formation.

Plasmonic nanoparticles resonating in the visible and near infrared have a great potential in designing polymer nanocomposites for window coatings. Among different exotic shapes, two-dimensional nanoplates are the most important as their optical properties can be easily tuned across a wide range of wavelengths. However, most of the current methods require polymers, long hours of reaction time, and multiple purification steps. I have developed a new multi-step strategy to synthesize Ag nanoplates which absorb in the range of 500–1660 nm. Utilizing the plasmonic nanoparticles, the spectral-selective plasmonic nanocomposites comprised of polymers and planarly oriented Ag nanoparticles of judiciously selected sizes and compositions were prepared. The plasmonic polymer nanocomposites spectral-selectively reflect, scatter, and filter light of any desired wavelength. The nanocomposites will impact on the tinted glass in modern energy-efficient buildings.

The outstanding electrical and mechanical properties of graphene have stirred a large volume of research in the last 15 years. Most graphene-based technologies focus on graphene at the nano or micro scale. To further the practicality of graphene in large devices like audio speakers, large areas and thin films are needed to reduce energy consumption. Graphene on its own cannot be used over large areas due to the inherent defects arising during the growth. Here I present results on combining suspended sheets of single layer graphene with a mechanically strong polymer thin film. The acoustic properties of speakers made of polymer/graphene thin films are similar to those of conventional electrodynamic speakers in modern cellphones. The energy consumption, however, reduces sharply by a factor of 10-100 for the polymer/graphene based speakers. This sharp decrease in energy is attributed to the lightweight, flexibility, and excellent electrical conductivity. Apart from speakers, the membrane designed here also has huge potential in other devices like touch panels, capacitive sensors, and photovoltaics.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/101942
Date26 July 2019
CreatorsKhan, Assad Ullah
ContributorsChemistry, Liu, Guoliang, Turner, S. Richard, Long, Timothy E., Moore, Robert Bowen
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0029 seconds