Return to search

Multi-objective optimisation : Elitism in discrete and highly discontinuous decision spaces

Multi-objective optimisation focuses on optimising multiple objectives simultanuously. Evolutionary and immune-based algorithms have been developed in order to solve multi-objective optimisation problems. These algorithms often include a property called elitism, a method of preserving good solutions. This study has focused on how different approaches of elitism affect an algorithm's ability to find optimal solutions in a multi-objective optimisation problem with a discrete and highly discontinuous decision space. Three state-of-the-art algorithms, NSGA-II, SPEA2+ and NNIA2, were implemented, validated and tested against a multi-objective optimisation problem of a miniature plant. Final populations yielded from all the algorithms were included in an analysis. The results of this study indicate that external populations are important in order for algorithms to find optimal solutions in multi-objective optimisation problems with a discrete and highly discontinuous decision spaces.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:his-5237
Date January 2011
CreatorsFasting, Johan
PublisherHögskolan i Skövde, Institutionen för kommunikation och information
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds