La miniaturisation des transistors a progressé par noeud technologique avec l’introduction successive de nouveaux matériaux (high k) et de nouvelles architectures (FinFET, NWFET). Pour les noeuds technologiques avancés, une nouvelle rupture en matériau est envisagée pour remplacer le Silicium du canal de conduction par des matériaux à forte mobilité (2D, III-V). Les matériaux III-V sont de bons candidats pour répondre à cette problématique grâce à leur forte mobilité de type n (InGaAs, InAs, InSb) ou de type p (GaSb). Au cours de cette thèse, un intérêt particulier a été porté au couple de matériaux InAs/GaSb, qui offre un avantagesupplémentaire de par son accord de paramètre de maille permettant d’accéder dans une même structure à des couches de mobilités n et p. La croissance de matériau III-V directement sur substrat (001)-Si 300mm est aujourd’hui un challenge d’intérêt majeur pour proposer des procédés compatibles avec les plateformes industriels CMOS. Ces croissances restent complexes à cause de la formation de défauts : parois d’antiphase, dislocations, fissures ; générées respectivement par la différence depolarité, de paramètre de maille et de coefficient d’expansion thermique, entre le Silicium et les matériaux III-V. Dans cette thèse nous présentons une première démonstration de croissance par MOVPE de GaSb directement sur substrat (001)-Si nominal 300mm compatible avec les plateformes industrielles CMOS. Les couches de GaSb présentent une rugosité de surface sub-1nm, et une qualité cristalline au niveau de l’état de l’art en MBE. La croissance d’une couche d’InAs a ensuite permis la réalisation d’un démonstrateur FinFET à canaux multiples d’InAs. Ce derniera été élaboré via une technique lithographique alternative à haute résolution basée sur l’utilisation de copolymère à bloc. Ce procédé simple pour réaliser des canaux de conduction permet d’accéder à une forte densité de fils, de faibles dimensions, et en seulement cinq étapes de fabrication. / The transistors’s miniaturization evolved through technological nodes with the successive introduction of new materials (high k) and new architectures (FinFET, NWFET). For the advanced technological nodes, a new break in material is considered to replace the silicon of the conduction channel with high mobility materials (2D, III-V). III-V materials are good candidates to address a solution to this problem thanks to their n-type (InGaAs, InAs, InSb)or p-type (GaSb) high mobility. During this PhD, a particular interest has been given to the InAs/GaSb pair of materials, which offers an additional advantage by its lattice parameter agreement making it possible to access n-type and p-type high mobility layers in the same structure.Nowadays, the growth of III-V materials directly on (001) -Si 300mm substrates is a challenge of major interest to develop industrial platforms compatible processes. These growths remain complex because of defects formation: antiphase boundaries, dislocations, cracks; generated respectively by the difference in polarity, lattice mismatch and difference in thermal expansion coefficient, between the silicon and III-V materials. In this PhD, we present a first demonstration of GaSb growth by MOVPE directly on nominal (001) -Si 300mm substrate compatible with industrial platforms. The GaSb layers have a sub-1nm surface roughness, and an equal to MBE state of the art crystalline quality. The growth of a InAs layer then allowed the realization of an InAs FinFET multi-channel demonstrator. The latter was developed via a high resolution alternative lithographic technique based on the use of block copolymer. This simple method for producing conduction channels makes it possible to access a high density of wires, of small dimensions, and in only five manufacturingsteps.
Identifer | oai:union.ndltd.org:theses.fr/2018GREAT082 |
Date | 24 October 2018 |
Creators | Cerba, Tiphaine |
Contributors | Grenoble Alpes, Baron, Thierry |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0016 seconds