El presente trabajo se trata de que un anillo (A, m) local, noetheriano, regular, completo de dimensión d, cuya característica sea igual que la de su cuerpo residual (A/m), sea isomorfo al anillo de series formales de potencia en d variables con coeficientes en este cuerpo. Pero si las características son diferentes como por ejemplo la característica de A es cero y la característica de A/m es un número primo p, A no tiene esta estructura, en este caso p estará contenido en m y no estará en m2, entonces se dice que A es inramificado, por lo tanto en este caso A queda completamente determinado por su cuerpo residual (A/m) y su dimensión. / The present work is about the fact that a local, noetherian, regular, complete ring (A, m) with dimension d, whose characteristic is the same as that of its residual field (A/m) is isomorphic to the ring of formal series of power in variable d with coefficientes in this field. But if the characteristics are different as for example the characteristic of A is zero and the characteristic of A/mis a prime number p, then A does not have this structure and in this case pwill be contained in the maximal ideal m and will not be contained in m2, then it is said that A is unramified, therefore in this case the ring A is completely determined by its residual field (A/m) and its dimension. / Tesis
Identifer | oai:union.ndltd.org:PUCP/oai:tesis.pucp.edu.pe:20.500.12404/16019 |
Date | 27 February 2020 |
Creators | Velásquez Alarcón, Jorge David |
Contributors | Fernández Sánchez, Percy Braulio |
Publisher | Pontificia Universidad Católica del Perú, PE |
Source Sets | Pontificia Universidad Católica del Perú |
Language | Spanish |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess, http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
Page generated in 0.0023 seconds