Return to search

Algumas conjecturas sobre ideais principais maximais de álgebras de Weyl / Some conjectures about principal maximal ideals of the Weyl álgebra

Seja d:= \'\\partial\'/\'\\partial IND.x\'+ \'beta\\partial\'/\'partial IND.y\'uma derivação simples de K[x,y], onde K é um corpo de característica zero. Doering, Lequain e Ripoll ([1]) provaram que exite um \'gama\'\'PERTENCE A\' K[x,y] tal que o operador S = \'\\partial\'/\'\\partial x\'+\'beta\\partial\'/\'\\partial y\'+\'gama\'\'PERTENCE A\'\'A IND.2\'\':= K[x,y]\' < \'\\partial\'/partial IND.x\', \'\\partial\'/\'partial\'/\'partial IND y\'\'>\'gera um ideal à esquerda maximal principal de \'A IND.2\'. Desta maneira mostraram, para n=2, que a seguinte conjectura é verdadeira: Seja d:=\'\\partial\'/ \'\\partial IND.x\"IND.1\"+\"alfa\'IND.2\'\'\\partial\'/\'\\partial\'IND.x\'\'IND.2\"+...+ alfa IND.n\"\\partial\'/\'\\partial IND.x\'\'IND.n\" uma derivaçào simples de K[\'x IND.1\'...\'x IND n\']. Então, A IND.n\'(d+\'gama\') é um ideal à esquerda maximal principal de Á IND.n\', para algum \'gama\'\'PERTENCE A\'K[\'x IND.1\',...\'x IND.n\']. Nós mostramos que esta conjectura é verdadeira em alguns casos particulares / Let d: =\'\\partial/\'/\'\\partial IND.x\'+ \'beta\\partial IND.y\' be a simple derivation of K[x,y], where K is a field of characteristic zero. Doering, Lequain e Ripol ([1]) proved that there exists a polynomial um \'gama\'\'IT BELONGS\' K[x,y] such that the operador S =\'\\partial\'/\'\\partial x\'+\'beta\\partial\'/\'\\partial y\'\'gama\'\'IT BELONGS\'\' á ind.2\':= K[x,y]\' < \'\\partial\'/\'partial IND.x\',\'partial\'/\'partial\'/\'partial IND y\'> \'generates a principal maximal left ideal of A IND.2\'. In this way, they showed that, for n=2, the following conjectures is tru: Let d:=\'\\partial\'/\'\\partial IND.x\"+\"alfaÍND.2\"\\partial\'/ \"\\partial\' IND.x\'IND.2\"+ álfa IND.n\"\\partial IND.xÍND.n\"be a simple derivation of K[\'x IND.1\',...,\'x IND n\']. Then, \'A IND.n\'(d+\'gama\') is a principal maximal left ideal of \'A IND.n\',for some \'gama\"IT BELONGS\'K[x IND.1\',...,\'x IND.n\']. We show that this conjecture is true in some cases

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-23022007-144550
Date07 July 2006
CreatorsLuciene Nogueira Bertoncello
ContributorsDaniel Levcovitz, Adalberto Panobianco Bergamasco, Severino Collier Coutinho, Marcelo Escudeiro Hernandes, Cydara Cavedon Ripoll
PublisherUniversidade de São Paulo, Matemática, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0018 seconds