Return to search

Monitoramento de áreas de restauração florestal e geração de recomendações de manejo adaptativo através de imagens obtidas por VANT e LIDAR / Monitoring of forest restoration areas and generation of adaptive management recommendations through images obtained by UAV and LIDAR

Submitted by Reginaldo Soares de Freitas (reginaldo.freitas@ufv.br) on 2017-12-15T17:23:02Z
No. of bitstreams: 1
texto completo.pdf: 1574432 bytes, checksum: e9f45eb637d1078c682138eab37ce072 (MD5) / Made available in DSpace on 2017-12-15T17:23:02Z (GMT). No. of bitstreams: 1
texto completo.pdf: 1574432 bytes, checksum: e9f45eb637d1078c682138eab37ce072 (MD5)
Previous issue date: 2017-07-14 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / O objetivo deste estudo foi desenvolver um método de monitoramento de áreas de restauração por meio do processamento digital de imagens de uma câmera a bordo de VANT (Veículo Aéreo Não Tripulado) e de uma composição dados LIDAR (Light Detection and Ranging), de modo a gerar recomendações precisas de manejo adaptativo. Além disso, por meio da análise de um banco de dados de monitoramento ecológico realizado em campo, determinaram-se valores de referência para indicadores ecológicos do processo de restauração. O estudo foi realizado áreas em processo de restauração da Fibria Celulose S.A, com mais de 48 meses de implantação. Utilizou-se imagens de câmera Canon S110 NIR a bordo de VANT e uma composição de dados LIDAR, que foram classificadas através dos algoritmos da Máxima Verossimilhança (MaxVer) e Random Forest (RF), e posteriormente comparou-se a acurácia da classificação (Índice Kappa e Exatidão Global - EG) por meio do teste Z. O indicador de cobertura do solo foi avaliado por imagens separando-se as classes de cobertura de copa, gramíneas e solo exposto. Para se recomendar valores de referência a partir de dados coletados em campo de diversos projetos monitorados na empresa, separou-se um grupo de dados contendo as áreas com cobertura de copa superior a 70%, dentro do qual foi calculada a média entre os quartis Q25 e Q75 dos valores dos indicadores de densidade e riqueza de regenerantes nativos. Para a geração de recomendação de manejo adaptativo, calculou-se a área ocupada pelas diferentes classes de cobertura do solo e elaborou- se um sistema especialista, através do ArcGIS. Em seguida, comparou-se as recomendações geradas a partir de cada imagem classificada. Os valores de EG, Kappa e a avaliação visual das imagens foram excelentes para todas as combinações de métodos (VANT ou LIDAR) e algoritmos utilizados. Entretanto, ao comparar a eficiência dos algoritmos, percebeu-se que tanto para a classificação proveniente de imagens de câmeras a bordo de VANT quanto da composição de dados LIDAR, o algoritmo RF apresentou melhor desempenho que o MaxVer, mas quando se comparou os métodos de obtenção de imagens não houve diferença significativa indicando que, independente da escolha do método, será possível obter bons resultados com o RF. Definiu-se 940 indivíduos por hectare e três espécies de regenerantes arbóreos ou arbustivos nativos como limiar de referência para considerar a área como adequada nos casos onde o método de restauração foi o plantio de mudas nativas ou condução da regeneração natural realizados há de cinco anos, e 1.700 indivíduos por hectare e cinco espécies nas áreas onde o única método realizado foi o corte ou anelamento das árvores de eucalipto, tendo sido realizado há cerca de 15 a 20 anos. Encontrou-se ligeira diferença entre as recomendações geradas pelas diferentes imagens classificadas. A recomendação mais gerada foi capina ou coroamento e adensamento com mudas de espécies nativas, representando 34% do total das recomendações geradas. O método de monitoramento sugerido por esse estudo se mostrou eficiente, e pode ser considerado promissor para se monitorar áreas em processo restauração, sobretudo em larga escala. / The objective of this study was to develop a methodology for monitoring restoration areas through the digital image processing on board of UAV (Unmanned Aerial Vehicle) and a data composition of Light Detection and Ranging (LIDAR), in order to generate accurate adaptive management recommendations. In addition, through the analysis of an ecological monitoring database carried out in the field, reference values were determined for ecological indicators of the restoration process. The study was carried out in areas in restoration process from Fibria Celulose S. A., with more than 48 months of implantation. It was used images of Canon S110 NIR camera on the UAV and a composition of LIDAR data, which were classified through the algorithms of the Maximum likelihood (MaxVer) and Random Forest (RF), and then the classification accuracy (Kappa Index and Global Accuracy - EG) was compared using the Z test. The soil cover indicator was evaluated by images separating the classes of canopy cover, grasses and bare soil. In order to recommend reference values from the field collected data of several monitored projects in the company, a data group containing the areas with canopy cover of more than 70% was separated, within which the average values from indicators of density and richness of native regenerants was calculated between quartiles Q25 and Q75. For the generation of adaptive management recommendations, the area occupied by the different soil cover classes was calculated and a specialist system was elaborated to define the recommendations through ArcGIS software. Then, the recommendations generated according to each classified image were compared. The values of EG, Kappa and visual evaluation of the images were excellent for all combinations of methods (UAV or LIDAR) and both algorithms used. However, when comparing the efficiency of the algorithms, it was observed that for both the classification from the images of the cameras on board UAV and the composition of LIDAR data, RF algorithm presented better performance than the MaxVer, but when comparing the imaging methods, there were no significant differences, indicating that regardless of the method choice, it will be possible to obtain good results using RF algorithm. We defined 940 individuals per hectare and three species of native regenerants as the reference threshold to consider the area as adequate, in cases where the restoration method was planting native seedlings or assisted natural regeneration more than five years ago, and 1,700 individuals per hectare and five species in areas where the eucalyptus was harvested 15 to 20 years ago. There was little difference between the recommendations generated by the different classified images, and the most common recommendation was weeding or seedling crowning followed by dense planting with native species (34%). The monitoring methodology suggested by this study was efficient, and can be considered promising to monitor areas in restoration process, especially on a large scale.

Identiferoai:union.ndltd.org:IBICT/oai:localhost:123456789/15300
Date14 July 2017
CreatorsReis, Bruna Paolinelli
ContributorsLeite, Helio Garcia, Gleriani, José Marinaldo, Sarcinelli, Tathiane Santi, Martins, Sebastião Venâncio
PublisherUniversidade Federal de Viçosa
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Repositório Institucional da UFV, instname:Universidade Federal de Viçosa, instacron:UFV
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.01 seconds