Return to search

Propriétés physico-chimiques et modélisation du fonctionnement en colonne d'adsorbants minéraux sélectifs du Cs / Cs-selective mineral adsorbents in columns : physico-chemical properties and modeling

Suite à la catastrophe nucléaire de Fukushima Dai-Ichi, des milliers de tonnes d’eau douce et d’eau de mer ont été utilisées pour le refroidissement des réacteurs ou contaminées du fait des infiltrations souterraines. La décontamination de ces eaux est rendue difficile par la présence d’autres cations (Na+, K+, Ca2+, Mg2+) présents naturellement dans ces eaux. Un procédé de décontamination en colonne garnie de deux types adsorbants minéraux, le TERMOXID 35 et le SORBMATECH® 202, a été étudié dans ce contexte. Le premier est un adsorbant commercial constitué du ferrocyanure mixte K/Ni imprégnés sur une matrice solide Zr(OH)4. Le second, synthétisé au CEA, est composé de ferrocyanure K/Cu imprégnés sur une matrice solide SiO2. Ces deux matériaux se sont révélés extrêmement efficaces pour décontaminer le Cs dans l’eau de mer avec des Kd,Cs de l’ordre de 105 mL/g.Les études menées en batch dans différentes solutions (eau pure, eau douce et eau de mer) ont permis de mettre en évidence les cinétiques de sorption ainsi que les mécanismes d’échange d’ions responsables de la sorption du Cs+ en tenant compte des effets compétitifs des cations des eaux naturelles. La modélisation des batchs a été menée avec le code géochimique CHESS en prenant en compte ces effets compétitifs selon le formalisme de Vanselow et les coefficients de sélectivité en constituant une base de données thermodynamiques spécifique. Les performances de ces matériaux ont ensuite été testées en colonne. Les paramètres opératoires tels que la vitesse de Darcy et le ratio H/D ont été étudiés pour définir les conditions de bon fonctionnement de ce procédé. Le T35 s’est révélé être moins performant du fait notamment de la diffusion lente du Cs dans les pores de ce matériau. Le S202 s’est révélé être un bon candidat pour l’application de forts débits de traitement. Les courbes de percée ainsi obtenues dans l’eau douce ont par ailleurs fait l’objet de modélisation avec les codes de transport réactif HYTEC et OPTIPUR couplés à la base CHESS de données thermodynamiques. Cette démarche permettra de mieux dimensionner les unités de décontamination définies par l’exploitant. / Following the nuclear disaster in Fukushima Dai-Ichi, thousands of tons of fresh water and seawater were used for cooling the reactors or contaminated as a result of groundwater seepage. Decontamination of these waters is complicated by the presence of other cations (Na+, K+, Ca2+, Mg2+) naturally present in these waters. Decontamination process in columns packed was studied in this context with two types of mineral adsorbents: the TERMOXID 35 and the SORBMATECH® 202. The first one is a commercial adsorbent and consists of mixed ferrocyanide K/Ni impregnated over a solid matrix Zr(OH)4. The second one was synthesized in CEA and is composed of ferrocyanide K/Cu impregnated over a solid matrix SiO2. Both materials have shown a high efficiency for Cs decontamination in seawater with Kd,Cs of about 105 mL/g.Batch studies conducted in different solutions (pure water, fresh water and seawater) allowed determining sorption kinetics and ion exchange mechanisms responsible for the sorption of Cs+, taking into account competitive effects of the natural water cations (Na+, K+, Ca2+, Mg2+). Modelling of batchs was performed with the geochemical code CHESS considering competitive effects according to the Vanselow formalism and selectivity coefficients, developing a specific thermodynamic database. The performances of these materials were then tested in column. The operating parameters such as Darcy’s velocity and the H/D ratio were studied for a proper functioning of this process. The T35 has proven to be less efficient mainly because of the slow diffusion of Cs in the pores of the material. The S202 has proven to be a good candidate for the application of high flow rates. The breakthrough curves obtained in fresh water have been modelled with the reactive transport codes HYTEC and OPTIPUR using the CHESS thermodynamic database. This approach will eventually help to support the design of a decontamination unit by the operator.

Identiferoai:union.ndltd.org:theses.fr/2015ENMP0070
Date09 December 2015
CreatorsMichel, Caroline
ContributorsParis, ENMP, Windt, Laurent de
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0025 seconds