Des 3 500 000 tonnes métriques anhydres (TMA) d’écorces produites en 2004 par l’industrie forestière au Québec, 96 000 (soit 2,7% de la masse totale des écorces produites la même année) étaient celles de bouleau blanc. Ces écorces sont en grande partie utilisées dans la production d’énergie alors qu’elles généreraient plus de gains si elles étaient utilisées pour la fabrication de panneaux agglomérés. L’objectif de ce projet de recherche est de mettre sur pied des stratégies permettant d’utiliser efficacement les particules d’écorce de bouleau pour fabriquer différents types de panneaux de masse volumique moyenne qui satisfont les exigences de la norme des panneaux conventionnels. Les essais préliminaires ont laissé entrevoir qu’il était difficile de fabriquer les panneaux de masse volumique moyenne exclusivement à base de ces particules d’écorce, à cause de leur faible taux de cellulose, surtout dans les particules d’écorce externe qui ne fait pas d’elles une matière structurale comme le bois. En outre, la forme granuleuse de la partie interne de cette écorce ne favorise pas l’effet d’entrelacement qui contribue fortement à l’amélioration des propriétés de flexion des panneaux. Également, la forte concentration des subérines dans la partie externe de cette écorce la rend très hydrophobe et sa surface est comme celle du téflon, c'est-à-dire, très difficile à mouiller. Les parties externe et interne de cette écorce ont des propriétés différentes, et pour pallier ces difficultés, la solution idéale consistait à concevoir des panneaux mixtes où ces particules d’écorce seraient renforcées avec les particules, les fibres et les lamelles de bois. Le premier type de panneau mis sur pied est fait d’un mélange de fibres de bois et de particules d’écorce interne de bouleau blanc dans la couche médiane et de fibres de bois dans les couches couvrantes. Le pourcentage de fibres de bois (deux niveaux) et le pourcentage de fibres de bois ajoutées aux particules d’écorce interne de la couche médiane (trois niveaux) constituaient les deux facteurs du dispositif utilisé pour la fabrication de ce type de panneaux. Les panneaux fabriqués ont tous eu des propriétés mécaniques qui rencontraient les exigences de la norme, le panneau avec 25% de fibres de bois dans les couches couvrantes et 9% de fibres de bois ajoutées aux particules d’écorce de la couche médiane ont eu les meilleurs propriétés mécaniques alors que le panneau le plus stable dimensionnellement est celui avec 22% de fibres de bois dans les couches couvrantes et 5% de fibres de bois mélangées aux particules d’écorce de la couche médiane. Quant au second type de panneau, il est constitué de particules d’écorce externe de bouleau blanc dans les couches couvrantes et respectivement de particules et de fibres de bois dans la couche médiane. Les deux facteurs intervenant dans sa fabrication sont le type de matériel dans la couche médiane (particules de bois versus fibres de bois) et le pourcentage de particules d’écorce dans les couches couvrantes. La méthode d’analyse statistique utilisée a permis de sélectionner le panneau avec 45% de particules d’écorce externe de bouleau dans les couches couvrantes et les particules de bois dans la couche médiane comme le meilleur du groupe, surtout en se basant sur le critère de la stabilité dimensionnelle mesurée par la dilatation linéaire. Le troisième type de panneau est un panneau sous-plancher de 8 mm d’épaisseur et densifié à 800 kg/m3. Il est constitué de particules d’écorce externe de bouleau dans les couches couvrantes et de particules de bois dans la couche médiane. Les deux facteurs utilisés pour sa conception sont : le pourcentage de la résine phénol-formaldéhyde (PF) utilisée pour encoller les particules d’écorce des couches couvrantes (trois niveaux de pourcentage) et le traitement des particules d’écorce utilisées (écorce non traitée à la soude versus écorce traitée à la soude). Les particules d’écorce sont traitées afin de mettre en évidence leur impact sur les propriétés des panneaux produits. Le traitement à la soude a diminué les propriétés des panneaux produits en affaiblissant les structures de l’écorce externe de bouleau. Le meilleur panneau du groupe est celui dont les particules d’écorce externe de bouleau non traitées à la soude sont encollées avec le plus bas pourcentage de résine PF. Le dernier type de panneau concerne un panneau mixte avec les particules d’écorce externe de bouleau blanc au centre et les lamelles de bois dans les couches couvrantes. Deux facteurs sont utilisés dans sa mise en place : l’orientation des lamelles dans les couches couvrantes (orientées versus non orientées) et le type de matériel dans la couche médiane (écorce non traitée à la soude, écorce non traitée à la soude plus 10% de fibres de bois, écorce traitée à la soude). Le traitement à la soude n’a pas produit les effets escomptés (amélioration des propriétés mécaniques). L’analyse statistique utilisée dans un plan factoriel en blocs complets a permis de déterminer le meilleur panneau comme étant celui avec les particules d’écorce non traitées à la soude et sans ajout de fibres de bois. La méthode mise sur pied pour les fabrications des quatre types de panneaux mixtes susmentionnés permet de valoriser plus de 50% (par rapport à la masse anhydre totale des particules utilisées pour fabriquer le panneau) de particules d’écorce de bouleau blanc par panneau fabriqué, ce qui conforte l’idée d’employer de façon judicieuse cette écorce comme source alternative d’approvisionnement en matière première pour les usines de panneaux. / In the year 2004 alone, 96 000 dry metric tons (DMT) of white birch bark were produced by forest industries in Quebec. This constituted approximately 2.7% of total bark production for the region. These barks which are mostly used for energy production would have generated more benefits had they been used for agglomerated panels manufacture. The objective of this research project was to set up strategies which will make possible to effectively use bark particles of white birch, for the manufacture of various types of medium density panels that meet the standard requirements of particleboards. The preliminary tests revealed that, it was difficult to manufacture medium density panels based on bark particles exclusively, due to the following disadvantages. (1): their low cellulose content, especially on the outer bark particles, does not make them a structural material like wood; (2): the granular form of the inner bark does not contribute to the interlacing effects, which strongly contribute to the improvement of panels bending properties; (3): the high concentration of suberins on the outer bark makes it very hydrophobic with a surface similar to teflon which is very difficult to wet; and (4): the outer and inner parts barks have different properties. In the face of such difficulties, the ideal solution consisted in designing mixed panels where these bark particles will be reinforced with wood particles, wood fibres and wood strands. The first panel type was set up - a mixed panel with wood fibres in the surface layers, and a mixture of wood fibres and inner bark particles of white birch in the core layer. The percentage of wood fibres (two levels) and the percentage of wood fibres added to the inner bark particles in the core layer (three levels) were the two panels manufacturing factors. All manufactured panels fulfilled the standard requirements for all mechanical properties. Panel with 25% wood fibres in the surface layers and 9% wood fibres mixed with bark particles in the core layer had the best mechanical properties, while panel with 22% wood fibres in the surface layers and 5% wood fibres mixed with bark particles in the core layer was the most dimensionally stable. The second panel type is composed of outer bark particles of white birch in the surface layers and wood material in the core layer. The two manufacturing factors were: the type of wood material in the core layer (wood particles versus wood fibres) and the percentage of outer bark particles in the surface layers. The statistical analysis method used made possible to select the panel with 45% outer bark particles of white birch in the surface layers and wood particles in the core layer as the best, especially by taking into account the dimensional stability criterion based on linear expansion measurement. The third panel type was a sub-flooring panel with a thickness of 8 mm and a density of 800 kg/m3. It was composed of outer bark particles in the surface layers and wood particles in the core layer. The two factors used for its experimental design were: the percentage of phenol-formaldehyde resin (PF) used to bond bark particles of surface layers (three levels of percentage) and the treatment of bark particles used (untreated bark versus bark treated with soda). The bark particles were treated in order to highlight their impact on the properties of manufactured panels. The alkali treatment lowered the properties of manufactured panels because soda treatment weakened the structures of outer bark particles of white birch used. The best panel was that with untreated outer bark particles of white birch, bonded with the lowest percentage of PF (5%). The last panel type was a mixed panel with outer bark particles of white birch in the core layer and wood strands in the surface layers. Two factors were used in its setting-up: the orientation of strands in the surface layers (oriented versus not non oriented) and the type of material in core layer (untreated bark particles, a mix of untreated bark particle and 10% wood fibres, bark particle treated with soda). The alkali treatment did not produce the expected effects (improvement of panels’ mechanical properties). The statistical analysis used in a factorial design in complete blocks made possible to choose the panel with untreated outer bark particles without wood fibres addition as the best. The method used to manufacture the above-mentioned mixed panels permitted to add higher proportion of white birch bark particles in each manufactured panel. The result of the present research project demonstrates that, bark particles of white birch, could be an alternative source of raw material supply for wood-based composite mills.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/26354 |
Date | 23 April 2018 |
Creators | Pedieu, Roger |
Contributors | Pichette, André, Riedl, Bernard |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | thèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xx, 234 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0032 seconds