L’électronique flexible est une thématique en plein essor, et impacte de nombreux secteurs applicatifs. L’objectif de cette thèse est de développer des composants sur substrats flexibles, pour des applications dans le domaine des radiofréquences. Elle est constituée de deux grandes parties : (i) la fabrication de composants passifs RF en utilisant la technologie d’impression par jet d’encre ; (ii) la fabrication de transistors graphène sur substrats flexibles. Ces travaux sont partiellement intégrés au projet Européen flagship GRAPHENE, et au projet ANR GRACY. La technique d’impression jet d’encre est particulièrement adaptée à la fabrication de composants sur substrats flexibles. L’un des challenges de cette approche technologique est de pouvoir atteindre une définition et une résolution adaptée au fonctionnement en régime radiofréquence. Le travail mené dans cette thèse a permis de réaliser des lignes homogènes de largeur minimale de 50 µm, et une résolution (distance entre 2 lignes de l’ordre de 15 µm. Différents composants passifs ont été fabriqués et caractérisés avec succès, et ce même en appliquant des contraintes en flexion aux dispositifs.Nous avons également développé et optimiser un procédé technologique, adapté à la fabrication de transistors à effet de champ à base de graphène (GFET), sur substrat flexible. Ce procédé présente un bilan thermique faible, et est basé sur l’utilisation d’une grille arrière à base d’aluminium dont l’oxyde naturel sert d’oxyde de grille. De nombreux transistors ont été fabriqués sur substrat kapton, et avec un bon rendement. Les meilleures performances en termes de fréquence de coupure du gain en courant (ft=39 GHz) et la fréquence maximale d’oscillation (fmax=13GHz) ont été mesurées sur un transistor de longueurs de grille Lg=100 nm et un développement de 12µm. Cette performance est à l’état de l’art de GFET flexibles. Ces performances sont conservées pour des contraintes atteignant 0,5%. / Flexible electronic has drawn growing attentions for past several years due to its largely potential applications. The objective of my PhD work is to develop devices based on flexible substrate, for RF applications. There are mainly two parts involved: (i) fabrication of passive devices (transmission lines, antenna, etc) using inkjet printing technology; (ii) fabrication of graphene field effect transistors on flexible substrate using graphene growth by CVD technique. This work is partially involved in the European Flagship program GRAPHENE, and the ANR program GRACY. Inkjet printing is a promising fabrication technology for flexible electronics. The challenge of this technology is the quality and reliability of printed patterns in terms of geometry. Based on optimized printing parameters, the structures of coplanar wave guide (CPW) transmission lines with nice printing quality were realized (definition of 50 µm, resolution down to 20 µm). The RF characterization of these transmission lines combining the considerations of geometric dimensions, sintering temperature, and substrate bending are presented. The outstanding electrical and mechanical properties make graphene suitable for flexible transistors. In this thesis, we have developed and optimized a new low temperature process based on back-gated structure either on rigid substrate than on flexible substrate (here kapton). From flexible transistors, we report as measured current gain cut-off frequency ( ft-DUT ,without any de-embedding) of 39 GHz and maximum oscillation frequency (fmax) of 13 GHz in devices with 100 nm gate length and 12 µm gate width. This result is at the level of the state of art for flexible GFETs.
Identifer | oai:union.ndltd.org:theses.fr/2015LIL10161 |
Date | 17 December 2015 |
Creators | Wei, Wei |
Contributors | Lille 1, Happy, Henri, Pallecchi, Emiliano, Pichonat, Emmanuelle |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds