Les surfaces optiques segmentées et discontinues sont connues depuis l'Antiquité. Elles ont fait l'objet de nombreuses applications, dont la première rapportée est celle des “miroirs ardents” d'Archimède conçus pour concentrer l'énergie solaire sur les voiles des vaisseaux ennemis, et ainsi y mettre feu. Cette idée toujours brûlante a présidé à la construction des fours solaires actuels destinés à tester la résistance de matériaux placés dans des conditions extrêmes, ou de centrales hélio-électriques dédiées à la production d'électricité domestique. Bien que les précisions de surface requises pour ces installations soient de l'ordre de quelques millimètres, leurs méthodes de conception, de réglage et de contrôle n'en font pas moins appel aux techniques de l'optique instrumentale moderne: ainsi le principe de la “méthode de rétro-visée” testée au cours de mon doctorat à l'IMP d'Odeillo s'apparente naturellement à ceux des senseurs de surface d'onde équipant aujourd'hui les systèmes d'optique adaptative nécessaires aux observations astrophysiques. Mais les surfaces optiques discontinues ne servent pas qu'à concentrer l'énergie lumineuse. Les expériences historiques de Fizeau et Michelson ont démontré leur capacité à mesurer des paramètres astrophysiques à très haute résolution angulaire, et ouvert la voie à une nouvelle génération d'instruments d'observation astronomique: interféromètres stellaires dont les ouvertures multiples peuvent être séparées par plusieurs centaines de mètres (tel le VLTI), télescopes géants équipés de miroirs primaires segmentés (les Keck au sol ou le JWST dans l'espace), ou de futuristes hyper-télescopes spatiaux en quête d'images directes de systèmes planétaires extra-solaires. De telles installations, dont les cahiers des charges deviennent toujours plus ambitieux, doivent être cophasés au dixième de longueur d'onde, voire au millième dans le cas d'un interféromètre à frange noire. Il devient alors nécessaire de développer de nouveaux moyens de modélisation et de contrôle de ces systèmes complexes, dont quelques-uns sont présentés ici dans le cadre des futurs télescopes de diamètre supérieur à 30 mètres (ELT) et des interféromètres chasseurs d'exo-planètes tels que Darwin et TPF-I. Les surfaces optiques discontinues sont également présentes dans le domaine de la spectroscopie: outre les classiques réseaux de diffraction, on les retrouve au cœur des spectro-imageurs de nouvelle génération, capables de former simultanément sur un même détecteur l'image d'un objet astrophysique et sa décomposition spectrale en tous points. Ainsi l'instrument MUSE, équipé de systèmes découpeurs d'images composés de matrices de miroirs discontinus, permettra-t-il au VLT d'observer les galaxies primordiales dans un avenir proche. Au vu de tant d'applications, il ressort clairement que les techniques de réalisation et de contrôle des surfaces optiques segmentées ou discontinues constitueront la clé de la science astrophysique du siècle à venir. Une longue route reste à accomplir, dont le banc de test SIRIUS développé à l'Observatoire de la Côte d'Azur afin d'évaluer les performances des hyper-télescopes, des interféromètres à frange noire, et de leurs méthodes de cophasage, pourrait constituer une étape décisive.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00530433 |
Date | 10 September 2010 |
Creators | Hénault, F. |
Publisher | Université de Nice Sophia-Antipolis |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | habilitation ࠤiriger des recherches |
Page generated in 0.002 seconds