Return to search

Développement d'outils de contrôle et d’analyse pour l'optimisation et la gestion de l'énergie pour système multiénergie / Development monitoring and analysis tools for optimization and energy management for multi-energy system

Le but de ce travail consiste à concevoir et développer des outils de commande et de contrôle pour des systèmes à structures variables comprenant plusieurs sources d’énergie (photovoltaïque, éolienne…). L’approche proposée vise à développer les modèles appropriés pour la commande et la gestion de chaque partie du système. Les différents modèles tiendront comptes du caractère aléatoire de la production d’énergie issue des différentes sources en présence tout en veillant à assurer une gestion globale optimale. L’intérêt principal d’un tel système est la cohabitation des ressources et du stockage dans le but de sécuriser l’approvisionnement au consommateur. La thèse traite trois phases principales : Une phase de modélisation et de mise en place des commandes, suivies d’une phase de simulation puis une phase de validations et de tests. Ainsi le modèle de chaque sous-système de production a été élaboré en tenant compte des différentes caractéristiques (physique et géométrique) de la source considérée, pour la partie commande et contrôle des approches classiques en automatique ont été appliqué afin d’assurer la maximisation de la production, la stabilité de l’ensemble et le bon fonctionnement du système. Une fois les commandes validées, nous avons procédés à des simulations Hardware In the Loop, en implémentant les stratégies de maximisation d'énergie sur la banc d'essai en temps réel, et ce à l'aide d'une carte DSPACE1104, puis nous avons assemblés les différentes sources d'énergies en les couplant via le programme de gestion d'énergie proposé et mis au point. / The objective of this work is to design and develop tools for monitoring and control systems with variable structures with multiple energy sources (wind, solar, ...). The proposed approach aims to develop appropriate models for the control and management of each part of the system. The different models take into account of the random nature of the production of energy outcome from different available sources, while ensuring optimum overall management of system. The main advantage of this system is the coexistence of resources and storage system in order to secure the supply to the consumer. The thesis deals with three main phases: a phase of modeling and implementation of controls, followed by a simulation phase and a phase of validation and testing. So the model of each subsystem production was developed with consideration of its different characteristics (physical and geometrical), for the control section conventional approaches were applied automatically to ensure the maximization of the production, the stability of the assembly and the functioning of the system. for the part concerning the management and control, conventional approaches in automatic have been applied to ensure the maximization of production, the stability of the overall system and its proper functioning. Once control strategies validated, we have processed in simulations Hardware In the Loop, by implementing strategies to maximize energy on the benchmark in real time, using a DSPACE1104 card, then we assembled the different sources of energy by coupling them through the program of energy management proposed and developed.

Identiferoai:union.ndltd.org:theses.fr/2013AIXM4300
Date03 October 2013
CreatorsMehdary, Adil
ContributorsAix-Marseille, Université Hassan II (Casablanca, Maroc), M'Sirdi, Kouider Nacer, Naamane, Aziz, Trihi, Mourad
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds