Return to search

Dynamique spatio-temporelle et régulation de l'activité de la<br />protéine kinase activée par l'adénosine monophosphate cyclique<br />dans des préparations de neurones en tranche<br />et<br />Les mécanismes cellulaires d'action du GHB dans le thalamus<br />ventrobasal.

Dans le système nerveux central, le principal effecteur de la voie de transduction de l'AMPc<br />est la protéine kinase activée par l'AMPc (PKA). L'activation de la PKA est impliquée dans de<br />nombreux processus comme la modulation de l'excitabilité neuronale par phosphorylation de<br />canaux ioniques, de l'homéostasie cellulaire par phosphorylation de cibles cytosoliques et de la<br />régulation génique par phosphorylation de facteurs de transcription. La régulation de l'activité de la<br />PKA ainsi que son activation spatiale et temporelle sont des paramètres indispensables à la<br />compréhension des mécanismes cellulaires à l'origine des effets de cette voie de seconds messagers.<br />Faute d'approches méthodologiques adaptées, très peu d'études se sont intéressées à la dynamique<br />spatiale et temporelle, à la spécificité et à la régulation de l'activité de la PKA dans les neurones.<br />Grâce aux sondes fluorescentes codées génétiquement, il est possible maintenant d'avoir<br />accès à ces paramètres. A l'aide d'un vecteur viral, nous avons fait exprimer une sonde sensible à<br />l'activité PKA (sonde AKAR pour A-kinase activity reporter) dans des préparations de neurones en<br />tranches. Cette sonde utilise le principe du transfert d'énergie par résonance (FRET) et permet de<br />mesurer par imagerie ratiométrique l'activité kinase de la PKA. Nous avons montré que la sonde<br />AKAR2, exprimée dans les neurones, modifie son spectre d'émission en réponse à une stimulation<br />de la voie AMPc. L'utilisation d'une sonde mutante, dont le site de phosphorylation a été modifié,<br />démontre que les changements observés dans le spectre d'émission de la sonde AKAR2 sont bien<br />attribuables à une phosphorylation.<br />Dans une première partie, nous avons étudié la phosphorylation de protéines cibles de la<br />PKA dans différents compartiments subcellulaires en réponse à différentes stimulations<br />extracellulaires. La phosphorylation de la sonde AKAR2, nous a permis de suivre en temps réel<br />l'activité de la PKA dans le cytosol. Afin de mesurer l'activité de la PKA dans le noyau, nous avons<br />adressé la sonde AKAR2 en utilisant un signal de localisation nucléaire (NLS). Enfin, la mesure de<br />l'activité de la PKA à la membrane a été réalisée grâce à l'étude de la phosphorylation des canaux<br />responsables du courant de l'AHP lente (IsAHP). Nous avons montré que la phosphorylation des<br />canaux ioniques est plus rapide que la phosphorylation des cibles cytosoliques, elles-mêmes plus<br />rapide que la phosphorylation des protéines nucléaires. De plus, nous avons montré que l'activité de<br />la PKA stimulée par l'activation de récepteurs couplés aux protéines G (RCPG) est différente de<br />l'activation directe des adénylyl cyclases (AC). En effet, l'activation de la PKA résultant de la<br />stimulation des RCPG produit des amplitudes de phosphorylation plus faible de la sonde AKAR2<br />dans le cytosol et le noyau.<br />Dans une deuxième partie, nous avons étudié le rôle des phosphodiestérases de type 4<br />(PDE4) dans la régulation des réponses β-adrénergiques. L'inhibition des PDE4 produit une<br />activation de la PKA dans les neurones traduisant ainsi une activité tonique des AC. Nous montrons<br />également que l'inhibition des PDE4 permet de potentialiser l'activité de la PKA en réponse à de<br />faibles concentrations d'agonistes β adrénergiques. Cette famille de PDEs, en dégradant l'AMPc,<br />participe donc à la régulation et la propagation des signaux PKA dans les neurones.<br />Enfin, au cours de ma thèse, je me suis également intéressé au γ-hydroxybutyrate (GHB)<br />composé qui est utilisé pour soigner certains troubles du sommeil et provoque chez le rat<br />l'apparition de signes comportementaux et de tracés encéphalographiques similaires à ceux observés<br />chez l'humain lors de crises d'épilepsie de type absence. L'ensemble de ces effets du GHB passe<br />probablement par une action sur la boucle thalamocorticale mais les mécanismes cellulaires à leurs<br />origines sont inconnus. Nous avons montré grâce à l'utilisation d'enregistrements<br />électrophysiologiques, que les courants post-synaptiques inhibiteurs sont beaucoup moins sensibles<br />au GHB que les courants post-synaptiques excitateurs et les courants potassiques à rectification<br />entrante (GIRK). Cette différence de sensibilité serait à l'origine d'un déséquilibre de la balance<br />excitation/inhibition reçue par les neurones thalamocorticaux ce qui participerait à la genèse d'une<br />activité oscillante du potentiel membranaire de ces neurones.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00069635
Date10 March 2006
CreatorsGervasi, Nicolas
PublisherUniversité Pierre et Marie Curie - Paris VI
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0019 seconds