Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2008-2009 / Suite aux traumatismes crâniens pénétrants, le cerveau devient graduellement hyperexcitable et génère des activités paroxystiques spontanées. Les mécanismes qui sous-tendent l’épileptogénèse demeurent cependant peu connus. La ligne directrice de nos travaux consiste en l'hypothèse que la diminution de l'activité corticale engendrée par la déafférentation déclenche des mécanismes homéostatiques agissant tant au niveau cellulaire qu’au niveau du réseau cortical, et qui mènent à une excitabilité neuronale accrue culminant en crises d’épilepsie. Nous avons testé cette hypothèse chez des chats adultes, lors de différents états de vigilance ou sous anesthésie, ayant subits une déafférentation partielle du gyrus suprasylvien. Nous avons évalué les effets de la déafférentation corticale aigue et chronique sur la survie des neurones et des cellules gliales et nous avons investigué comment la privation chronique d'afférences neuronales pourrait modifier les propriétés du réseau cortical et déclencher des crises d’épilepsie. Après la déafférentation du gyrus suprasylvien, les neurones situés dans les couches corticales profondes, en particulier les neurones inhibiteurs GABAérgiques, dégénèrent progressivement et parallèlement à une fréquence croissante des activités paroxystiques, notamment pendant le sommeil à ondes lentes. La privation chronique d'afférences neuronales et la perte de neurones activent les mécanismes homéostatiques de plasticité qui favorisent une plus grande connectivité neuronale, une efficacité plus élevée des connexions synaptiques excitatrices et des changements des propriétés neuronales intrinsèques. Ensemble, ces facteurs favorisent une excitation accrue du réseau cortical. L'activité corticale spontanée, mesurée par les taux moyens de décharge, augmente progressivement, en particulier pendant le sommeil à ondes lentes, caractérisé par des périodes silencieuses alternant avec des périodes actives. Ceci soutient, en outre, notre hypothèse concernant la participation des mécanismes de plasticité homéostatique. La dégénération des neurones des couches corticales profondes produit des changements importants dans la distribution laminaire de l'activité neuronale, qui est déplacée vers les couches plus superficielles, dans la partie déafferenté du gyrus. Ce changement dans la distribution de profils de profondeurs de décharges neuronales modifie également le déclenchement de l'activité corticale spontanée. Dans le cortex normal et dans la partie relativement intacte du gyrus suprasylvien, l'activité corticale est générée dans les couches corticales profondes. Pourtant, dans le cortex chroniquement déafferenté, l'oscillation lente et les activités ictales sont générées dans les couches superficielles et puis diffusent vers les couches plus profondes. Le traumatisme cortical induit également une importante gliose réactive et une altération de la fonction normale des cellules gliales, ce qui cause l’enlèvement dysfonctionnel du K+ extracellulaire et qui augmente l'excitabilité des neurones favorisant ainsi la génération d’activités paroxystiques. En conclusion, les mécanismes de plasticité homéostatique déclenchés par le niveau diminué d'activité dans le cortex déafferenté produisent une hyperexcitabilité corticale incontrôlable et génèrent finalement les crises d’épilepsie. Dans ces conditions, l’augmentation de l'activité corticale plutôt que la diminution avec des médicaments antiépileptiques pourrait être salutaire pour empêcher le développement de l'épileptogenèse post-traumatique. / After penetrating cortical wounds, the brain becomes gradually hyperexcitable and generates spontaneous paroxysmal activity, but the progressive mechanisms of epileptogenesis remain virtually unknown. The guiding line of our experiments was the hypothesis that the reduced cortical activity following deafferentation triggers homeostatic mechanisms acting at cellular and network levels, leading to an increased neuronal excitability and finally generating paroxysmal activities. We tested this hypothesis either in anesthetized adult cats, or during natural sleep and wake, using the model of partially deafferented suprasylvian gyrus to induce posttraumatic epileptogenesis. We evaluated the effects of acute and chronic cortical deafferentation on the survival of neurons and glial cells and how long-term input deprivation could shape up the properties of neuronal networks and the initiation of spontaneous cortical activity. Following cortical deafferentation of the suprasylvian gyrus, the deeply laying neurons, particularly the inhibitory GABAergic ones, degenerate progressively in parallel with an increased propensity to paroxysmal activity, mainly during slow-wave sleep. The chronic input deprivation and the death of neurons activate homeostatic plasticity mechanisms, which promote a gradual increased neuronal connectivity, higher efficacy of excitatory synaptic connections and changes in intrinsic cellular properties favoring increased excitation. The spontaneous cortical activity quantified by means of firing rate augments also progressively, particularly during slow-wave sleep, characterized by periods of silent states alternating with periods of active states, which supports furthermore our hypothesis regarding the involvement of homeostatic plasticity mechanisms. The degeneration of neurons in the deep cortical layers generates important changes in the laminar distribution of neuronal activity, which is shifted from the deeper layers to the more superficial ones, in the partially deafferented part of the gyrus. This change in the depth profile distribution of firing rates modifies also the initiation of spontaneous cortical activity which, in normal cortex, and in the relatively intact part of the deafferented gyrus, is initiated in the deep cortical layers. Conversely, in late stages of the undercut, both the cortical slow oscillation and the ictal activity are initiated in the more superficial layers and then spread to the deeper ones. Cortical trauma induces also an important reactive gliosis associated with an impaired function of glial cells, responsible for a dysfunctional K+ clearance in the injured cortex, which additionally increases the excitability of neurons, promoting the generation of paroxysmal activity. We conclude, that the homeostatic plasticity mechanisms triggered by the decreased level of activity in the deafferented cortex, generate an uncontrollable cortical hyperexcitability, finally leading to seizures. If this statement is true, augmenting cortical activity rapidly after cortical trauma rather than decreasing it with antiepileptic medication, could prove beneficial in preventing the development of posttraumatic epileptogenesis.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/25651 |
Date | 20 April 2018 |
Creators | Avramescu, Sinziana |
Contributors | Timofeev, Igor |
Source Sets | Université Laval |
Language | English |
Detected Language | French |
Type | thèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xv, 237 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0032 seconds