Return to search

Estudo topológico de órbitas periódicas no circuito experimental de Chua / Topological studies of periodic orbits in the experimental Chua's circuit

Estudamos o comportamento dinâmico de séries temporais experimentais obtidas de um circuito de Chua quando dois parâmetros de controle, $Delta R_1$ e $Delta R_2$, são variados.Investigamos os comportamentos caótico e periódico, analisando as séries temporais ao redor e no interior de duas janelas periódicas presentes no espaço de parâmetros $(Delta R_1,Delta R_2)$ do circuito. Na vizinhança da janela de período três, analisamos como a dinâmica simbólica se altera quando construída em diferentes seções de Poincaré de um mesmo atrator, e investigamos a dimensão dos mapas de retorno, uni ou bidimensional, para diferentes atratores caóticos presentes nessa região do espaço de parâmetros. Ainda nessa vizinhança, empregamos técnicas de caracterização topológica para confirmar a existência de fibras caóticas, que são curvas de codimensão um no espaço de parâmetros onde as propriedades caóticas dos atratores são preservadas.Ao redor da janela de período quatro, investigamos a transição entre os três comportamentos caóticos para os quais construímos os respectivos moldes topológicos. Propusemos também um molde topológico para o regime caótico após a crise por fusão ocorrer no circuito. Finalizando, investigamos as bifurcações e a estrutura topológica das órbitas periódicas que formam as janelas de período três e de período quatro, construindo um espaço de parâmetros topológico, baseado em um mapa bi-modal, para descrever as duas janela periódicas. / We have studied the dynamical behavior of experimental time series obtained from a Chua's circuit by variation of two parameter control, $Delta R_1$ and $Delta R_2$. We investigated the chaotic and periodic behaviors of the circuit, analyzing temporal series around and inside of two periodic windows in the two-parameter space $(Delta R_1,Delta R_2)$. In the period-three window neighborhood, we analyzed how the symbolic dynamics changes when it is built by different Poincaré sections of an attractor, and we studied the dimension of return map, one- or two-dimensional, for many chaotic attractors in this region of the parameter space. In this neighborhood, we also applied topological techniques to confirm the existence of chaotic fibers: codimension one curves where the chaotic properties of the attractors remain unchanged in the two-parameter space.Around the period-four window, we investigated, by template analysis, the transition between three chaotic attractors found in the Chua's circuit. We proposed a template for chaotic regime of the circuit after merge-crisis. Finally, we investigated the bifurcations and topological structure of periodic orbits in period-three and period-four windows and also proposed a topological parameter space, based in a bimodal map model, that describe these two periodic windows.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-24032007-174511
Date19 May 2006
CreatorsDariel Mazzoni Maranhão
ContributorsJose Carlos Sartorelli, Marcus Aloizio Martinez de Aguiar, Ibere Luiz Caldas, Jason Alfredo Carlson Gallas, Coraci Pereira Malta
PublisherUniversidade de São Paulo, Física, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds