Úlceras de pele são causadas devido à deficiência na circulação sanguínea. O diagnóstico é feito pela análise visual das regiões afetadas. A quantificação da distribuição de cores da lesão, por meio de técnicas de processamento de imagens pode auxiliar na caracterização e análise da dinâmica do processo patológico e resposta ao tratamento. O processamento de imagens de úlceras dermatológicas envolve etapas relacionadas a segmentação, caracterização e indexação. Esta análise é importante para classificação, recuperação de imagens similares e acompanhamento da evolução de uma lesão. Este trabalho apresenta um estudo sobre técnicas de segmentação e caracterização de imagens coloridas de úlceras de pele, baseadas nos modelos de cores RGB, HSV, L*a*b* e L*u*v*, utilizando suas componentes na extração de informações de textura e cor. Foram utilizadas técnicas de Aprendizado de Máquina e algoritmos matemáticos para a segmentação e extração de atributos, utilizando uma base de dados com 172 imagens. Nos testes de recuperação, foram utilizadas diferentes métricas de distância para avaliação do desempenho e técnicas de seleção de atributos. Os resultados obtidos evidenciam bom potencial para apoio ao diagnóstico e acompanhamento da evolução do tratamento com valores de até 75% de precisão para as técnicas de recuperação, 0,9 de área embaixo da curva receiver-operating-characteristic na classificação e 0,04 de erro médio quadrático entre a composição de cores da imagem segmentada automaticamente e a segmentada manualmente. Nos testes utilizando seleção de atributos, foi observado uma redução nos valores de precisão de recuperação (60%) e valores similares nos tetes de classificação (0,85). / Skin ulcers are caused due to deficiency in the bloodstream. The diagnosis is made by a visual analysis of the affected area. Quantification of color distribution of the lesion by image processing techniques can aid in the characterization and response to treatment. The image processing steps involves skin ulcers related to segmentation, characterization and indexing. This analysis is important for classification, image retrieval and similar tracking the evolution of an injury. This project presents a study of segmentation techniques and characterization of color images of dermatological skin ulcers, based on the color models RGB, HSV, L*a*b* and L*u*v*, using their components in the extraction of texture and color information. Were used Machine Learning techniques, mathematical algorithms for segmentation and extraction of attributes, using a database containing 172 images in two versions. In recovery tests were used different distance metrics for performance evaluation and techniques of features selection. The results show good potential to support the diagnosis and monitoring of treatment progress with values up to 75% precision in recovery techniques, 0.9 area under the curve receiver-operating-characteristic) in classification, and 0.04 mean square error between the color composition of the automatically segmented image and the manually segmented image. In tests utilizing feature selection was observed a decrease in precision values of image retrieval (60%) and similar values in the classification\'s tests (0.85).
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-08012013-110054 |
Date | 01 November 2012 |
Creators | Silvio Moreto Pereira |
Contributors | Paulo Mazzoncini de Azevedo Marques, Lauro Wichert Ana, Marcello Henrique Nogueira Barbosa |
Publisher | Universidade de São Paulo, Bioengenharia, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0029 seconds